CONVERGENCE RATE ESTIMATE FOR A DOMAIN DECOMPOSITION METHOD

被引:10
|
作者
CAI, XC
GROPP, WD
KEYES, DE
机构
[1] ARGONNE NATL LAB,DIV MATH & COMP SCI,ARGONNE,IL 60439
[2] YALE UNIV,DEPT MECH ENGN,NEW HAVEN,CT 06520
关键词
D O I
10.1007/BF01385503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a convergence rate analysis for a variant of the domain decomposition method introduced by Gropp and Keyes for solving the algebraic equations that arise from finite element discretization of nonsymmetric and indefinite elliptic problems with Dirichlet boundary conditions in IR2. We show that the convergence rate of the preconditioned GMRES method is nearly optimal in the sense that the rate of convergence depends only logarithmically on the mesh size and the number of substructures, if the global coarse mesh is fine enough.
引用
收藏
页码:153 / 169
页数:17
相关论文
共 50 条
  • [1] A convergence rate estimate for the SVM decomposition method
    Lai, D
    Shilton, A
    Mani, N
    Palaniswami, M
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 931 - 936
  • [2] On the convergence rate of a parallel nonoverlapping domain decomposition method
    Qin LiZhen
    Shi ZhongCi
    Xu XueJun
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (08): : 1461 - 1478
  • [3] On the convergence rate of a parallel nonoverlapping domain decomposition method
    Qin LiZhen
    Shi ZhongCi
    Xu XueJun
    [J]. Science in China Series A: Mathematics, 2008, 51 : 1461 - 1478
  • [4] On the convergence rate of a parallel nonoverlapping domain decomposition method
    QIN LiZhen
    [J]. Science China Mathematics, 2008, (08) : 1461 - 1478
  • [5] An unimprovable estimate of convergence rate in the fictitious domain method for an ocean model
    Kuttykozhaeva, SN
    Smagulov, SS
    Tukenova, LM
    [J]. DOKLADY MATHEMATICS, 2003, 68 (01) : 128 - 131
  • [6] On the domain-dependence of convergence rate in a domain decomposition method for the Strokes equations
    Saito, N.
    [J]. East-West Journal of Numerical Mathematics, 2000, 8 (01): : 37 - 55
  • [7] ON THE OPTIMAL CONVERGENCE RATE OF A ROBIN-ROBIN DOMAIN DECOMPOSITION METHOD
    Chen, Wenbin
    Xu, Xuejun
    Zhang, Shangyou
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (04) : 456 - 475
  • [8] The rate of convergence for the decomposition method
    Boumenir, A
    Gordon, M
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (1-2) : 15 - 25
  • [9] An unimprovable estimate of the convergence rate in the fictitious domain method for the Navier-Stokes equations
    Kuttykozhaeva, SN
    Zhumagulov, BT
    Smagulov, SS
    [J]. DOKLADY MATHEMATICS, 2003, 67 (03) : 382 - 385
  • [10] On the Convergence Rate of a Space Decomposition Method
    Zhou S.-Z.
    Zeng J.
    Shan G.-H.
    [J]. Acta Mathematicae Applicatae Sinica, 2002, 18 (3) : 455 - 460