The rate of convergence for the decomposition method

被引:2
|
作者
Boumenir, A [1 ]
Gordon, M [1 ]
机构
[1] State Univ W Georgia, Dept Math, Carrollton, GA 30118 USA
关键词
decomposition method; reaction diffusion equation;
D O I
10.1081/NFA-120034114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the convergence of approximations by the decomposition method for semi-linear evolution equations with a quadratic nonlinearity. We also obtain the rate of convergence and a computable error bound for the approximation in the case one of the eigenvalues is a negative integer. The method can easily be generalized for quadratic nonlinearities appearing in the well-known K.P.P and K.dV equations.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 50 条
  • [1] On the Convergence Rate of a Space Decomposition Method
    Zhou S.-Z.
    Zeng J.
    Shan G.-H.
    [J]. Acta Mathematicae Applicatae Sinica, 2002, 18 (3) : 455 - 460
  • [2] On the Convergence Rate of a Space Decomposition Method
    Shu-zi Zhou
    [J]. Acta Mathematicae Applicatae Sinica, 2002, (03) : 455 - 460
  • [3] A convergence rate estimate for the SVM decomposition method
    Lai, D
    Shilton, A
    Mani, N
    Palaniswami, M
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 931 - 936
  • [4] CONVERGENCE RATE ESTIMATE FOR A DOMAIN DECOMPOSITION METHOD
    CAI, XC
    GROPP, WD
    KEYES, DE
    [J]. NUMERISCHE MATHEMATIK, 1992, 61 (02) : 153 - 169
  • [5] On the convergence rate of a parallel nonoverlapping domain decomposition method
    Qin LiZhen
    Shi ZhongCi
    Xu XueJun
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (08): : 1461 - 1478
  • [6] On the convergence rate of a parallel nonoverlapping domain decomposition method
    Qin LiZhen
    Shi ZhongCi
    Xu XueJun
    [J]. Science in China Series A: Mathematics, 2008, 51 : 1461 - 1478
  • [7] On the convergence rate of a parallel nonoverlapping domain decomposition method
    QIN LiZhen
    [J]. Science China Mathematics, 2008, (08) : 1461 - 1478
  • [9] Convergence rate analysis of an asynchronous space decomposition method for convex minimization
    Tai, XC
    Tseng, P
    [J]. MATHEMATICS OF COMPUTATION, 2002, 71 (239) : 1105 - 1135
  • [10] ON THE OPTIMAL CONVERGENCE RATE OF A ROBIN-ROBIN DOMAIN DECOMPOSITION METHOD
    Chen, Wenbin
    Xu, Xuejun
    Zhang, Shangyou
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (04) : 456 - 475