ON GENERALIZED MINIMAL DOMINATION PARAMETERS FOR PATHS

被引:10
|
作者
BOLLOBAS, B
COCKAYNE, EJ
MYNHARDT, CM
机构
[1] UNIV VICTORIA,VICTORIA V8W 2Y2,BC,CANADA
[2] UNIV S AFRICA,PRETORIA,SOUTH AFRICA
关键词
D O I
10.1016/0012-365X(90)90352-I
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subset X of vertices of a graph is a k-minimal P-set if X has property P, but the removal of any l vertices from X, where l less-than-or-equal-to k, followed by the addition of any (l - 1) vertices destroys the property P. We note that 1-minimality is the usual minimality concept. In this paper we determine-GAMMA-k(P(n)), the largest cardinality of a k-minimal dominating set of the n-vertex path P(n). We also prove for any n-vertex graph G, GAMMA-2(G)gamma(GBAR) less-than-or-equal-to n and finally a 'Gallai-type' theorem for k-minimal parameters is established.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 50 条
  • [41] Domination game and minimal edge cuts
    Klavzar, Sandi
    Rall, Douglas F.
    [J]. DISCRETE MATHEMATICS, 2019, 342 (04) : 951 - 958
  • [42] An Efficient Generalized Plasticity Constitutive Model with Minimal Complexity and Required Parameters
    Heisam Heidarzadeh
    Mohammad Oliaei
    [J]. KSCE Journal of Civil Engineering, 2018, 22 : 1109 - 1120
  • [43] An Efficient Generalized Plasticity Constitutive Model with Minimal Complexity and Required Parameters
    Heidarzadeh, Heisam
    Oliaei, Mohammad
    [J]. KSCE JOURNAL OF CIVIL ENGINEERING, 2018, 22 (04) : 1109 - 1120
  • [44] EDGE SUBDIVISION AND EDGE MULTISUBDIVISION VERSUS SOME DOMINATION RELATED PARAMETERS IN GENERALIZED CORONA GRAPHS
    Dettlaff, Magda
    Raczek, Joanna
    Yero, Ismael G.
    [J]. OPUSCULA MATHEMATICA, 2016, 36 (05) : 575 - 588
  • [45] GENERALIZED DYCK PATHS
    LABELLE, J
    YEH, YN
    [J]. DISCRETE MATHEMATICS, 1990, 82 (01) : 1 - 6
  • [46] On generalized Dyck paths
    Rukavicka, Josef
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [47] On generalized Delannoy paths
    Autebert, JM
    Schwer, SR
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (02) : 208 - 223
  • [48] Roman domination number on cardinal product of paths and cycles
    Klobucar, Antoaneta
    Puljic, Ivona
    [J]. CROATIAN OPERATIONAL RESEARCH REVIEW, 2015, 6 (01) : 71 - 78
  • [49] Double total domination number of Cartesian product of paths
    Li, Linyu
    Yue, Jun
    Zhang, Xia
    [J]. AIMS MATHEMATICS, 2023, 8 (04): : 9506 - 9519
  • [50] The domination number of Cartesian product of two directed paths
    Mollard, Michel
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (01) : 144 - 151