ON GENERALIZED MINIMAL DOMINATION PARAMETERS FOR PATHS

被引:10
|
作者
BOLLOBAS, B
COCKAYNE, EJ
MYNHARDT, CM
机构
[1] UNIV VICTORIA,VICTORIA V8W 2Y2,BC,CANADA
[2] UNIV S AFRICA,PRETORIA,SOUTH AFRICA
关键词
D O I
10.1016/0012-365X(90)90352-I
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subset X of vertices of a graph is a k-minimal P-set if X has property P, but the removal of any l vertices from X, where l less-than-or-equal-to k, followed by the addition of any (l - 1) vertices destroys the property P. We note that 1-minimality is the usual minimality concept. In this paper we determine-GAMMA-k(P(n)), the largest cardinality of a k-minimal dominating set of the n-vertex path P(n). We also prove for any n-vertex graph G, GAMMA-2(G)gamma(GBAR) less-than-or-equal-to n and finally a 'Gallai-type' theorem for k-minimal parameters is established.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 50 条
  • [1] Ratio of generalized stability and domination parameters
    Zverovich, Igor E.
    Zverovich, Inessa I.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 32 : 279 - 284
  • [2] BOUNDS RELATING GENERALIZED DOMINATION PARAMETERS
    HENNING, MA
    SWART, HC
    [J]. DISCRETE MATHEMATICS, 1993, 120 (1-3) : 93 - 105
  • [3] Domination parameters of generalized Sierpinski graphs
    Varghese, Jismy
    Anu, V
    Aparna, Lakshmanan S.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (01) : 4 - 10
  • [4] Domination related parameters in the generalized lexicographic product of graphs
    Samodivkin, Vladimir
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 300 : 77 - 84
  • [5] Linear programming formulation for some generalized domination parameters
    Pandiaraja, Duraisamy
    Shanmugam, Esakkimuthu
    Sivakumar, Rathinakumar
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (04)
  • [6] Some Domination Parameters in Generalized Jahangir Graph Jn,m
    Mtarneh, S.
    Hasni, R.
    Akhbari, M. H.
    Movahedi, F.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 : 113 - 121
  • [7] The domination equivalence classes of paths
    Beaton, I
    Brown, J., I
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 73 : 291 - 312
  • [8] Generalized domination and efficient domination in graphs
    Bange, DW
    Barkauskas, AE
    Host, LH
    Slater, PJ
    [J]. DISCRETE MATHEMATICS, 1996, 159 (1-3) : 1 - 11
  • [9] Domination game on paths and cycles
    Kosmrlj, Gasper
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2017, 13 (01) : 125 - 136
  • [10] Game total domination for cycles and paths
    Dorbec, Paul
    Henning, Michael A.
    [J]. Discrete Applied Mathematics, 2016, 208 : 7 - 18