THERE ARE NO P-COMPLETE FAMILIES OF SYMMETRIC BOOLEAN FUNCTIONS

被引:0
|
作者
GEREBGRAUS, M
PATURI, R
SZEMEREDI, E
机构
[1] UNIV CALIF SAN DIEGO,LA JOLLA,CA 92093
[2] RUTGERS STATE UNIV,NEW BRUNSWICK,NJ 08903
关键词
D O I
10.1016/0020-0190(89)90174-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:47 / 49
页数:3
相关论文
共 50 条
  • [31] On the average case complexity of some P-complete problems
    Serna, Maria
    Xhafa, Fatos
    Theoretical Informatics and Applications, 1999, 33 (01): : 33 - 45
  • [32] On one class of symmetric Boolean functions
    Ou, Z.-H., 2013, Editorial Board of Journal on Communications (34):
  • [33] On the number of rotation symmetric Boolean functions
    ShaoJing Fu
    Chao Li
    LongJiang Qu
    Science China Information Sciences, 2010, 53 : 537 - 545
  • [34] On a conjecture for balanced symmetric Boolean functions
    Cusick, Thomas W.
    Li, Yuan
    Stanica, Pantelimon
    JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2009, 3 (04) : 273 - 290
  • [35] On the Fourier spectrum of symmetric Boolean functions
    Kolountzakis, Mihail N.
    Lipton, Richard J.
    Markakis, Evangelos
    Mehta, Aranyak
    Vishnoi, Nisheeth K.
    COMBINATORICA, 2009, 29 (03) : 363 - 387
  • [36] On the matrix of rotation symmetric Boolean functions
    Ciungu, Lavinia C.
    Iovanov, Miodrag C.
    DISCRETE MATHEMATICS, 2018, 341 (12) : 3271 - 3280
  • [37] SYMMETRIC AND THRESHOLD BOOLEAN FUNCTIONS ARE EXHAUSTIVE
    MORET, BME
    THOMASON, MG
    GONZALEZ, RC
    IEEE TRANSACTIONS ON COMPUTERS, 1983, 32 (12) : 1211 - 1212
  • [38] Solving PP-Complete and #P-Complete Problems by P Systems with Active Membranes
    Alhazov, Artiom
    Burtseva, Liudmila
    Cojocaru, Svetlana
    Rogozhin, Yurii
    MEMBRANE COMPUTING, 2009, 5391 : 108 - 117
  • [39] On the number of rotation symmetric Boolean functions
    FU ShaoJing1
    2State Key Laboratory of Information Security
    3National Mobile Communications Research Laboratory
    Science China(Information Sciences), 2010, 53 (03) : 537 - 545
  • [40] SPECIAL CLASS OF SYMMETRIC BOOLEAN FUNCTIONS
    BISWAS, NN
    ELECTRONICS LETTERS, 1969, 5 (04) : 72 - &