LOCAL VERSUS NONLOCAL COMPUTATION OF LENGTH OF DIGITIZED-CURVES

被引:10
|
作者
KULKARNI, SR
MITTER, SK
RICHARDSON, TJ
TSITSIKLIS, JN
机构
[1] MIT,INFORMAT & DECIS SYST LAB,CAMBRIDGE,MA 02139
[2] AT&T BELL LABS,MATH SCI RES CTR,MURRAY HILL,NJ 07974
基金
美国国家科学基金会;
关键词
LOCAL; NONLOCAL; PARALLEL COMPUTATION; LENGTH; DIGITIZED CURVE;
D O I
10.1109/34.297951
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider the problem of computing the length of a curve from digitized versions of the curve using parallel computation. Our aim is to study the inherent parallel computational complexity of this problem as a function of the digitization level. Precise formulations for the digitization, the parallel computation, and notions of local and nonlocal computations are given. We show that length cannot be computed locally from digitizations on rectangular tessellations. However, for a random tessellation and appropriate deterministic ones, we show that the length of straight line segments can be computed locally. Implications of our results for a method for image segmentation and a number of open problems are discussed.
引用
收藏
页码:711 / 718
页数:8
相关论文
共 50 条
  • [41] Asymptotic behaviour for local and nonlocal evolution equations on metric graphs with some edges of infinite length
    Ignat, Liviu I.
    Rossi, Julio D.
    San Antolin, Angel
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (03) : 1301 - 1339
  • [42] Asymptotic behaviour for local and nonlocal evolution equations on metric graphs with some edges of infinite length
    Liviu I. Ignat
    Julio D. Rossi
    Angel San Antolin
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 1301 - 1339
  • [43] EFFICIENT COMPUTATION OF TRANSIENT SOUNDING CURVES FOR WIRE SEGMENTS OF FINITE LENGTH USING AN EQUIVALENT DIPOLE APPROXIMATION
    STOYER, CH
    [J]. GEOPHYSICAL PROSPECTING, 1990, 38 (01) : 87 - 99
  • [44] MULTICOMPONENT NONLINEAR EVOLUTION EQUATIONS OF THE HEISENBERG FERROMAGNET TYPE: LOCAL VERSUS NONLOCAL REDUCTIONS
    Valchev, Tihomir
    [J]. PROCEEDINGS OF THE TWENTY-SECOND INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2021, 22 : 274 - 285
  • [45] Local versus nonlocal elliptic equations: short-long range field interactions
    Cassani, Daniele
    Vilasi, Luca
    Wang, Youjun
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 895 - 921
  • [46] Local versus nonlocal constitutive theories of nonequilibrium thermodynamics: the Guyer–Krumhansl equation as an example
    V. A. Cimmelli
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [47] Nonlinear Meissner effect in a high-temperature superconductor: Local versus nonlocal electrodynamics
    Oates, D. E.
    Agassi, D.
    Wong, E.
    de Escobar, A. Leese
    Irgmaier, K.
    [J]. PHYSICAL REVIEW B, 2008, 77 (21):
  • [48] Local versus nonlocal order-parameter field theories for quantum phase transitions
    Belitz, D
    Kirkpatrick, TR
    Vojta, T
    [J]. PHYSICAL REVIEW B, 2002, 65 (16): : 1651121 - 1651128
  • [49] Local versus nonlocal interactions in protein folding and stability - An experimentalist's point of view
    Munoz, V
    Serrano, L
    [J]. FOLDING & DESIGN, 1996, 1 (04): : R71 - R77
  • [50] The H2 length estimation method: An algorithm for digitized curves for asymmetric 3D grid applied on coronary bypass surgery
    Hadar, E
    Hahiashvili, Z
    Aravot, D
    [J]. 2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 285 - 288