Implementing Cloud-based Parallel Metaheuristics: an Overview

被引:1
|
作者
Gonzalez, Patricia [1 ]
Pardo, Xoan C. [1 ]
Doallo, Ramon [1 ]
Banga, Julio R. [2 ]
机构
[1] Univ A Coruna, Comp Architecture Grp, La Coruna, Spain
[2] IIM CSIC, BioProc Engn Grp, Vigo, Spain
来源
关键词
cloud computing; MapReduce; MPI; parallel metaheuristics; Spark;
D O I
10.24215/16666038.18.e26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Metaheuristics are among the most popular methods for solving hard global optimization problems in many areas of science and engineering. Their parallel implementation applying HPC techniques is a common approach for efficiently using available resources to reduce the time needed to get a good enough solution to hard-to-solve problems. Paradigms like MPI or OMP are the usual choice when executing them in clusters or supercomputers. Moreover, the pervasive presence of cloud computing and the emergence of programming models like MapReduce or Spark have given rise to an increasing interest in porting HPC workloads to the cloud, as is the case with parallel metaheuristics. In this paper we give an overview of our experience with different alternatives for porting parallel metaheuristics to the cloud, providing some useful insights to the interested reader that we have acquired through extensive experimentation.
引用
收藏
页码:228 / 238
页数:11
相关论文
共 50 条
  • [31] Cloud-based HPC
    Geller, Tom
    [J]. COMMUNICATIONS OF THE ACM, 2012, 55 (03) : 21 - 21
  • [32] CRITICAL OVERVIEW OF THE CLOUD-BASED INTERNET OF THINGS PILOT PLATFORMS FOR SMART CITIES
    Simon, Janos
    Mester, Gyula
    [J]. INTERDISCIPLINARY DESCRIPTION OF COMPLEX SYSTEMS, 2018, 16 (03) : 397 - 407
  • [33] Developing and Implementing a Cloud-Based Software Solution for Tracking Ureteral Stents: A Pilot Study
    Tam, Christopher A.
    Newman, Mark W.
    Dauw, Casey A.
    Ghani, Khurshid R.
    Roberts, William W.
    Ambani, Sapan N.
    Hollingsworth, John M.
    [J]. JOURNAL OF ENDOUROLOGY, 2021, 35 (03) : 285 - 288
  • [34] Implementing a fracture liaison service open model of care utilizing a cloud-based tool
    S. L. Greenspan
    A. Singer
    K. Vujevich
    B. Marchand
    D. A. Thompson
    Y.-J. Hsu
    D. Vaidya
    L. S. Stern
    D. Zeldow
    D. B. Lee
    S. Karp
    R. Recker
    [J]. Osteoporosis International, 2018, 29 : 953 - 960
  • [35] Implementing a fracture liaison service open model of care utilizing a cloud-based tool
    Greenspan, S. L.
    Singer, A.
    Vujevich, K.
    Marchand, B.
    Thompson, D. A.
    Hsu, Y. -J.
    Vaidya, D.
    Stern, L. S.
    Zeldow, D.
    Lee, D. B.
    Karp, S.
    Recker, R.
    [J]. OSTEOPOROSIS INTERNATIONAL, 2018, 29 (04) : 953 - 960
  • [36] A Cloud-based Framework for Implementing Portable Machine Learning Pipelines for Neural Data Analysis
    Ellis, Charles A.
    Gu, Ping
    Sendi, Mohammad S. E.
    Huddleston, Daniel
    Sharma, Ashish
    Mahmoudi, Babak
    [J]. 2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 4466 - 4469
  • [37] Massively Parallel CUDA Simulations of Cardiac and Embryonic MRI on a Cloud-Based Cluster
    Kantasis, George
    Xanthis, Christos G.
    Haris, Kostas
    Aletras, Anthony H.
    [J]. 2015 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2015, 42 : 469 - 471
  • [38] A Cloud-Based Parallel Space-Saving Algorithm for Big Networking Data
    He, Dazhong
    Yang, Yang
    Liu, Jun
    [J]. IEEE ACCESS, 2018, 6 : 45886 - 45898
  • [39] Cloud-Based Multidimensional Parallel Dynamic Programming Algorithm for a Cascade Hydropower System
    Ma, Yufei
    Zhong, Ping-an
    Xu, Bin
    Zhu, Feilin
    Li, Jieyu
    Wang, Han
    Lu, Qingwen
    [J]. WATER RESOURCES MANAGEMENT, 2021, 35 (09) : 2705 - 2721
  • [40] Unified programming concepts for unobtrusive integration of cloud-based and local parallel computing
    Mehrabi, Mostafa
    Giacaman, Nasser
    Sinnen, Oliver
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 115 : 700 - 719