Application of Support Vector Machine Based on Optimized Kernel Function in People Detection

被引:4
|
作者
Yang Meng [1 ,2 ]
Zhang Bao [1 ]
Song Yulong [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Key Lab Airborne Opt Imaging & Measurement, Changchun 130033, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
image processing; people detection; support vector machine; kernel function; penalty term; parameter optimization;
D O I
10.3788/LOP55.041001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
According to the requirements of real-time and accuracy of people detection, we propose the support vector machine based on optimized kernel function in people detection, which uses histogram of oriented gradients algorithm to extract the features of people and the support vector machine algorithm as the classifier. On the basis of the traditional algorithm, we propose the combined kernel function as the kernel function of the classifier. After setting the slack variable and introducing the penalty factor, we combine genetic algorithm and K-fold cross validation optimization to select and optimize the combination coefficients and parameters, and build the final classifier for people detection based on the optimize parameters. Results show that the proposed algorithm achieves better result, and can satisfy the requirement of real-time and accuracy in people detection.
引用
收藏
页数:8
相关论文
共 33 条
  • [1] Cao L., 2009, ANAL IDENTIFICATION
  • [2] WLD: A Robust Local Image Descriptor
    Chen, Jie
    Shan, Shiguang
    He, Chu
    Zhao, Guoying
    Pietikainen, Matti
    Chen, Xilin
    Gao, Wen
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) : 1705 - 1720
  • [3] Chen Quansheng, 2006, Acta Optica Sinica, V26, P933
  • [4] Duan H C., 2012, RES SUPER PARAMETER
  • [5] Fei L R, 2017, OPTICS PRECISION ENG, V25, P182
  • [6] Gao H, 2017, LASER OPTOELECTRON P, V54
  • [7] Gao H, 2017, LASER OPTOELECTRONIC, V547
  • [8] Guo J Z., 2012, RES METHOD PEDESTRIA
  • [9] Kohavi R, 1995, P 14 INT JOINT C ART, P1137, DOI DOI 10.1067/MOD.2000.109031
  • [10] Li H Y., 2009, RES KERNELSIN SUPPOR