WLD: A Robust Local Image Descriptor

被引:773
|
作者
Chen, Jie [1 ]
Shan, Shiguang [2 ]
He, Chu [3 ]
Zhao, Guoying [1 ]
Pietikainen, Matti [1 ]
Chen, Xilin [2 ]
Gao, Wen [4 ]
机构
[1] Univ Oulu, Machine Vis Grp, Elect & Informat Engn Dept, FI-90014 Oulu, Finland
[2] Chinese Acad Sci, Key Lab Intelligent Informat Proc CAS, Inst Comp Technol, Beijing 100190, Peoples R China
[3] Wuhan Univ, Sch Elect Informat, Wuhan 430079, Peoples R China
[4] Peking Univ, Key Lab Machine Percept, Beijing 100871, Peoples R China
基金
芬兰科学院; 中国国家自然科学基金;
关键词
Pattern recognition; Weber law; local descriptor; texture; face detection; TEXTURE CLASSIFICATION; BINARY PATTERNS; GRAY-SCALE; ROTATION; FEATURES;
D O I
10.1109/TPAMI.2009.155
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Inspired by Weber's Law, this paper proposes a simple, yet very powerful and robust local descriptor, called the Weber Local Descriptor (WLD). It is based on the fact that human perception of a pattern depends not only on the change of a stimulus (such as sound, lighting) but also on the original intensity of the stimulus. Specifically, WLD consists of two components: differential excitation and orientation. The differential excitation component is a function of the ratio between two terms: One is the relative intensity differences of a current pixel against its neighbors, the other is the intensity of the current pixel. The orientation component is the gradient orientation of the current pixel. For a given image, we use the two components to construct a concatenated WLD histogram. Experimental results on the Brodatz and KTH-TIPS2-a texture databases show that WLD impressively outperforms the other widely used descriptors (e.g., Gabor and SIFT). In addition, experimental results on human face detection also show a promising performance comparable to the best known results on the MIT+CMU frontal face test set, the AR face data set, and the CMU profile test set.
引用
收藏
页码:1705 / 1720
页数:16
相关论文
共 50 条
  • [1] A Local Image Descriptor Robust to Illumination Changes
    Zambanini, Sebastian
    Kampel, Martin
    [J]. IMAGE ANALYSIS, SCIA 2013: 18TH SCANDINAVIAN CONFERENCE, 2013, 7944 : 11 - 21
  • [2] A robust local feature descriptor based on image contrast
    [J]. Yan, X.-J. (aimar_yxj@126.com), 1600, Science Press (36):
  • [3] P-SURF: A Robust Local Image Descriptor
    Liu, Congxin
    Yang, Jie
    Huang, Hai
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2011, 27 (06) : 2001 - 2015
  • [4] LCO: A robust and efficient local descriptor for image matching
    Duo, Jingyun
    Chen, Pengfeng
    Zhao, Long
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2017, 72 : 234 - 242
  • [5] RBFD: A robust image local binary feature descriptor
    Geng, Lichuan
    Cheng, Yun
    Su, Songzhi
    Lin, Xianming
    Li, Shaozi
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2015, 27 (05): : 815 - 823
  • [6] Robust local feature descriptor for multisource remote sensing image registration
    Chen, Shuhan
    Li, Xiaorun
    Yang, Han
    Zhao, Liaoying
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2018, 12
  • [7] COLOR CHILD: A Robust and Computationally Efficient Color Image Local Descriptor
    Anamandra, Sai Hareesh
    Chandrasekaran, V.
    [J]. 2014 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2014, : 227 - 234
  • [8] Robust image region descriptor using local derivative ordinal binary pattern
    Shang, Jun
    Chen, Chuanbo
    Pei, Xiaobing
    Liang, Hu
    Tang, He
    Sarem, Mudar
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2015, 24 (03)
  • [9] A robust image descriptor-local radial grouped invariant order pattern
    Wang, Xiangyang
    Xu, Yanqi
    Niu, Panpan
    [J]. Information Sciences, 2025, 693
  • [10] PPD: A Robust Low-computation Local Descriptor for Mobile Image Retrieval
    Liu, Congxin
    Yang, Jie
    Feng, Deying
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2010, 4 (03): : 305 - 323