EAKIN-NAGATA THEOREM FOR COMMUTATIVE RINGS WHOSE REGULAR IDEALS ARE FINITELY GENERATED

被引:0
|
作者
Chang, Gyu Whan [1 ]
机构
[1] Univ Incheon, Dept Math, Incheon 406772, South Korea
来源
KOREAN JOURNAL OF MATHEMATICS | 2010年 / 18卷 / 03期
关键词
r-Noetherian ring; finite R-module;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity, T(R) be the total quotient ring of R, and D be a ring such that R subset of D subset of T(R) and D is a finite R-module. In this paper, we show that each regular ideal of R is finitely generated if and only if each regular ideal of D is finitely generated. This is a generalization of the Eakin-Nagata theorem that R is Noetherian if and only if D is Noetherian.
引用
收藏
页码:271 / 275
页数:5
相关论文
共 50 条
  • [21] Eakin-Nagata-Eisenbud Theorem for Right S-Noetherian Rings
    Lee, Gangyong
    Baeck, Jongwook
    Lim, Jung Wook
    TAIWANESE JOURNAL OF MATHEMATICS, 2023, 27 (02): : 237 - 257
  • [22] Principal ideals of finitely generated commutative monoids
    J. C. Rosales
    J. I. García-García
    Czechoslovak Mathematical Journal, 2002, 52 : 75 - 85
  • [23] ON THE REGULAR DIGRAPH OF IDEALS OF COMMUTATIVE RINGS
    Afkhami, M.
    Karimi, M.
    Khashyarmanesh, K.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (02) : 177 - 189
  • [24] RINGS ALL OF WHOSE IDEALS ARE FINITELY EMBEDDED
    AHSAN, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (06): : A530 - A530
  • [26] On commutative rings whose maximal ideals are idempotent
    Kourki, Farid
    Tribak, Rachid
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2019, 60 (03): : 313 - 322
  • [27] Commutative Rings whose Proper Ideals are Serial
    Behboodi, M.
    Heidari, S.
    ALGEBRAS AND REPRESENTATION THEORY, 2017, 20 (06) : 1531 - 1544
  • [28] Commutative Rings whose Proper Ideals are Serial
    M. Behboodi
    S. Heidari
    Algebras and Representation Theory, 2017, 20 : 1531 - 1544
  • [29] Commutative rings with finitely generated multiplicative semigroup
    Anderson, DD
    Stickles, J
    SEMIGROUP FORUM, 2000, 60 (03) : 436 - 443
  • [30] Commutative rings with finitely generated multiplicative semigroup
    Anderson D.D.
    Stickles J.
    Semigroup Forum, 2000, 60 (3) : 436 - 443