DECIDABILITY PROBLEMS IN LANGUAGES WITH HENKIN QUANTIFIERS

被引:4
|
作者
KRYNICKI, M [1 ]
MOSTOWSKI, M [1 ]
机构
[1] UNIV WARSAW,FAC PHILOSOPH,DEPT LOG,WARSAW,POLAND
关键词
D O I
10.1016/0168-0072(92)90003-I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the language L(H(omega)) with all Henkin quantifiers H(n) defined as follows: H(n)x1...x(n)y1...y(n) phi(x1,...,x(n), y1,...,y(n)) iff there exists f1...f(n) for-all x1...x(n) phi(x1,...,x(n), f1(x1), ..., f(n)(x(n))). We show that the theory of equality in L(H(omega)) is undecidable. The proof of this result goes by interpretation of the word problem for semigroups. Henkin quantifiers are strictly related to the function quantifiers F(n) defined as follows: F(n)x1...x(n)y1...y(n) phi(x1,...,x(n), y1,...,y(n)) iff there exists f for-all x1...x(n) phi(x1,...,x(n), f(x1),...,f(x(n)). In contrast with the first result we show that the theory of equality with all quantifiers F(n) is decidable. We also consider decidability problems for other theories in languages L(F2) and L(H-2).
引用
收藏
页码:149 / 172
页数:24
相关论文
共 50 条
  • [1] HENKIN QUANTIFIERS AND COMPLETE PROBLEMS
    BLASS, A
    GUREVICH, Y
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 1986, 32 (01) : 1 - 16
  • [2] HENKIN AND FUNCTION QUANTIFIERS
    KRYNICKI, M
    VAANANEN, J
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 1989, 43 (03) : 273 - 292
  • [3] DECIDABILITY IN SPECIAL UNIFORM STRUCTURES CONCERNING LANGUAGES WITH MAXIMAL QUANTIFIERS
    WEESE, M
    [J]. ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1976, 22 (03): : 215 - 230
  • [4] Henkin quantifiers and the definability of truth
    Hyttinen, T
    Sandu, G
    [J]. JOURNAL OF PHILOSOPHICAL LOGIC, 2000, 29 (05) : 507 - 527
  • [5] Henkin Quantifiers and the Definability of Truth
    Tapani Hyttinen
    Gabriel Sandu
    [J]. Journal of Philosophical Logic, 2000, 29 : 507 - 527
  • [6] SOME APPLICATIONS OF HENKIN QUANTIFIERS
    BARWISE, J
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1976, 25 (1-2) : 47 - 63
  • [7] Spectra of formulae with Henkin quantifiers
    Golinska, J
    Zdanowski, K
    [J]. PHILOSOPHICAL DIMENSIONS OF LOGIC AND SCIENCE, 2003, 320 : 29 - 45
  • [8] Towards a proof theory for Henkin quantifiers
    Baaz, Matthias
    Lolic, Anela
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2021, 31 (01) : 40 - 66
  • [9] HENKIN QUANTIFIERS: LOGIC, GAMES, AND COMPUTATION
    Gurevich, Yuri
    Sevenster, Merlijn
    [J]. BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2006, (89): : 136 - 155
  • [10] Decidability of operation problems for TOL languages and subclasses
    Bordihn, Henning
    Holzer, Markus
    Kutrib, Martin
    [J]. INFORMATION AND COMPUTATION, 2011, 209 (03) : 344 - 352