Henkin quantifiers and the definability of truth

被引:4
|
作者
Hyttinen, T [1 ]
Sandu, G
机构
[1] Univ Helsinki, Dept Math, FIN-00014 Helsinki, Finland
[2] Univ Helsinki, Dept Philosophy, FIN-00014 Helsinki, Finland
关键词
Henkin quantifiers; IF logic; fixed point logic; definability of truth;
D O I
10.1023/A:1026533210855
中图分类号
B81 [逻辑学(论理学)];
学科分类号
010104 ; 010105 ;
摘要
Henkin quantifiers have been introduced in Henkin (1961). Walkoe (1970) studied basic model-theoretical properties of an extension L-1 (H) of ordinary first-order languages in which every sentence is a first-order sentence prefixed with a Henkin quantifier. In this paper we consider a generalization of Walkoes languages: we close L-1(H)with respect to Boolean operations, and obtain the language L-1(H). At the next level, we consider an extension L-2(H) of L-1(H) in which every sentence is an L-1(H)-sentence prefixed with a Henkin quantifier. We repeat this construction to infinity. Using the (un)-definability of truth in N for these languages, we show that this hierarchy does not collapse. In addition, we compare some of the present results to the ones obtained by Kripke (1975), McGee (1991), and Hintikka (1996).
引用
收藏
页码:507 / 527
页数:21
相关论文
共 50 条
  • [1] Henkin Quantifiers and the Definability of Truth
    Tapani Hyttinen
    Gabriel Sandu
    [J]. Journal of Philosophical Logic, 2000, 29 : 507 - 527
  • [2] HENKIN AND FUNCTION QUANTIFIERS
    KRYNICKI, M
    VAANANEN, J
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 1989, 43 (03) : 273 - 292
  • [3] SOME APPLICATIONS OF HENKIN QUANTIFIERS
    BARWISE, J
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1976, 25 (1-2) : 47 - 63
  • [4] HENKIN QUANTIFIERS AND COMPLETE PROBLEMS
    BLASS, A
    GUREVICH, Y
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 1986, 32 (01) : 1 - 16
  • [5] Spectra of formulae with Henkin quantifiers
    Golinska, J
    Zdanowski, K
    [J]. PHILOSOPHICAL DIMENSIONS OF LOGIC AND SCIENCE, 2003, 320 : 29 - 45
  • [6] DECIDABILITY PROBLEMS IN LANGUAGES WITH HENKIN QUANTIFIERS
    KRYNICKI, M
    MOSTOWSKI, M
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 1992, 58 (02) : 149 - 172
  • [7] Towards a proof theory for Henkin quantifiers
    Baaz, Matthias
    Lolic, Anela
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2021, 31 (01) : 40 - 66
  • [8] DEFINABILITY HIERARCHIES OF GENERALIZED QUANTIFIERS
    HELLA, L
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 1989, 43 (03) : 235 - 271
  • [9] HENKIN QUANTIFIERS: LOGIC, GAMES, AND COMPUTATION
    Gurevich, Yuri
    Sevenster, Merlijn
    [J]. BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2006, (89): : 136 - 155
  • [10] A Globally Sound Analytic Calculus for Henkin Quantifiers
    Baaz, Matthias
    Lolic, Anela
    [J]. LOGICAL FOUNDATIONS OF COMPUTER SCIENCE (LFCS 2020), 2020, 11972 : 128 - 143