NEURAL-NETWORK RECONSTRUCTION OF LONGITUDINAL BEAM PHASE-SPACE FROM THE SYNCHROTRON-RADIATION SPECTRUM

被引:2
|
作者
KOGA, J
TAKEDA, T
机构
[1] Advanced Science Research Center, Japan Atomic Energy Research Institute, Naka-gun, Ibaraki-ken, 311-01, Naka-machi
关键词
D O I
10.1016/0168-9002(95)00430-0
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In order to control a charged particle beam and improve the quality of the system detailed information of the phase space of the charged particle beam system is needed. Coherent synchrotron radiation combined with a neural network as a tool can be used to determine the longitudinal phase space structure of a beam. In the case of coherent synchrotron radiation emission there are two regions in the spectrum. At the high frequency end the spectrum is just that expected from normal synchrotron radiation. At the low frequency end the spectrum is influenced by the beam structure in configuration space. A neural network can be used to solve the inverse problem of obtaining the distribution of particles which produces the radiation.
引用
收藏
页码:580 / 590
页数:11
相关论文
共 50 条
  • [41] BP Neural Network Model Based on Phase Space Reconstruction
    Hu, Jie
    Zeng, Xiangjin
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4, 2009, : 2183 - 2186
  • [42] Beam profile measurements and transverse phase-space reconstruction on the relativistic heavy-ion collider
    Connolly, R
    Michnoff, R
    Moore, T
    Shea, T
    Tepikian, S
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2000, 443 (2-3): : 215 - 222
  • [43] Phase Space Reconstruction from Accelerator Beam Measurements Using Neural Networks and Differentiable Simulations
    Roussel, R.
    Edelen, A.
    Mayes, C.
    Ratner, D.
    Gonzalez-Aguilera, J. P.
    Kim, S.
    Wisniewski, E.
    Power, J.
    PHYSICAL REVIEW LETTERS, 2023, 130 (14)
  • [44] The short-term wind power forecast based on phase-space reconstruction and neural networks
    1600, Digital Information Research Foundation, 2 Srinivasamoorthy Avenue, L.B Road, Adyar, Chennai, 600 020, India (11):
  • [45] Application of a phase space beam position and size monitor for synchrotron radiation source characterization
    Samadi, N.
    Shi, X.
    Dallin, L.
    Chapman, D.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2019, 22 (12):
  • [46] Reconstruction of gyrotropic phase-space distributions from one-dimensional projections
    Egedal, J
    Bindslev, H
    PHYSICS OF PLASMAS, 2004, 11 (05) : 2191 - 2198
  • [47] Influence of source parameters on the longitudinal phase-space distribution of a pulsed cryogenic beam of barium fluoride molecules
    Mooij, M. C.
    Bethlem, H. L.
    Boeschoten, A.
    Borschevsky, A.
    Esajas, K.
    Fikkers, T. H.
    Hoekstra, S.
    van Hofslot, J. W. F.
    Jungmann, K.
    Marshall, V. R.
    Meijknecht, T. B.
    Timmermans, R. G. E.
    Touwen, A.
    Ubachs, W.
    Willmann, L.
    Yin, Y.
    NEW JOURNAL OF PHYSICS, 2024, 26 (05):
  • [48] Domains in the low-temperature phase of magnetite from synchrotron-radiation x-ray topographs
    Medrano, C
    Schlenker, M
    Baruchel, J
    Espeso, J
    Miyamoto, Y
    PHYSICAL REVIEW B, 1999, 59 (02): : 1185 - 1195
  • [49] Neural network model coupled with phase space reconstruction and its application
    Liu, Weilin
    Dong, Zengchuan
    Chen, Nanxiang
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 2, PROCEEDINGS, 2007, : 40 - +
  • [50] Data Prediction of ECG Based on Phase Space Reconstruction and Neural Network
    Sun, ZhongGao
    Wang, QiaoLing
    Xue, QuanDe
    Liu, Qun
    Tan, QingQuan
    2018 8TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC), 2018, : 162 - 165