ON THE NUMBER OF DETERMINING NODES FOR THE GINZBURG-LANDAU EQUATION

被引:29
|
作者
KUKAVICA, I
机构
[1] Department of Mathematics, Indiana University, Bloomington, IN
关键词
D O I
10.1088/0951-7715/5/5/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the case of the complex Ginzburg-Landau equation in one space dimension it is proven that solutions are completely determined by their values at two sufficiently close points. As a consequence, an upper bound for the winding number of stationary solutions is established in terms of the bifurcation parameters. It is also proven that the fractal dimension of the set of stationary solutions is less than or equal to 4.
引用
收藏
页码:997 / 1006
页数:10
相关论文
共 50 条
  • [31] Dynamic bifurcation of the Ginzburg-Landau equation
    Ma, T
    Park, J
    Wang, SH
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2004, 3 (04): : 620 - 635
  • [32] Remarks on an Equation of the Ginzburg-Landau Type
    Wang, Bei
    FILOMAT, 2019, 33 (18) : 5913 - 5917
  • [33] Lq solutions to the Ginzburg-Landau equation
    Gutiérrez, S
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 307 - 309
  • [34] Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions
    Bethuel, F
    Brezis, H
    Orlandi, G
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (02) : 432 - 520
  • [35] The attractor of the stochastic generalized Ginzburg-Landau equation
    BoLing Guo
    GuoLian Wang
    DongLong Li
    Science in China Series A: Mathematics, 2008, 51 : 955 - 964
  • [36] TRAVELING WAVES IN THE COMPLEX GINZBURG-LANDAU EQUATION
    DOELMAN, A
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 225 - 266
  • [37] ONSET OF CHAOS IN THE GENERALIZED GINZBURG-LANDAU EQUATION
    MALOMED, BA
    NEPOMNYASHCHY, AA
    PHYSICAL REVIEW A, 1990, 42 (10): : 6238 - 6240
  • [38] DYNAMICS OF DEFECTS IN THE COMPLEX GINZBURG-LANDAU EQUATION
    RICA, S
    TIRAPEGUI, E
    PHYSICA D, 1992, 61 (1-4): : 246 - 252
  • [39] Vortex dynamics for the Ginzburg-Landau wave equation
    R.L. Jerrard
    Calculus of Variations and Partial Differential Equations, 1999, 9 : 1 - 30
  • [40] CLASSIFICATION OF SYMMETRIC VORTICES FOR THE GINZBURG-LANDAU EQUATION
    Sauvageot, Myrto
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2006, 19 (07) : 721 - 760