ON CERTAIN FRACTIONAL CALCULUS OPERATORS INVOLVING GENERALIZED MITTAG-LEFFLER FUNCTION

被引:0
|
作者
Kumar, Dinesh [1 ]
机构
[1] Jai Narain Vyas Univ, Dept Math & Stat, Jodhpur 342005, Rajasthan, India
来源
关键词
Marichev-Saigo-Maeda fractional calculus operators; Generalized Mittag-Leffler function; Generalized Wright hypergeometric function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function F-3 [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators are the generalization of the Saigo fractional calculus operators. The established results provide extensions of the results given by Gupta and Parihar [3], Saxena and Saigo [30], Samko et al. [26]. On account of the general nature of the generalized Mittag-Leffler function and generalized Wright function, a number of known results can be easily found as special cases of our main results.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
  • [21] CERTAIN RELATION OF GENERALIZED FRACTIONAL CALCULUS ASSOCIATED WITH THE PRODUCT OF GENERALIZED MITTAG-LEFFLER FUNCTION AND SRIVASTAVA POLYNOMIALS
    Shaktawat, Bhupender Singh
    Lal, Madan
    Gupta, Rajeev Kumar
    [J]. JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2019, 18 (1-2): : 1 - 14
  • [22] Editorial for Special Issue "Fractional Calculus Operators and the Mittag-Leffler Function"
    Andric, Maja
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (08)
  • [23] On the approximation to fractional calculus operators with multivariate Mittag-Leffler function in the kernel
    Ozarslan, Mehmet Ali
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 454
  • [24] Fractional Calculus of a Unified Mittag-Leffler Function
    J. C. Prajapati
    B. V. Nathwani
    [J]. Ukrainian Mathematical Journal, 2015, 66 : 1267 - 1280
  • [25] FRACTIONAL CALCULUS OF THE GENERALIZED MITTAG-LEFFLER (p,s,k)-FUNCTION
    Gurjar, Meena Kumari
    Chhattry, Preeti
    Shrivastava, Subhash Chandra
    [J]. JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2021, 20 (1-2): : 73 - 82
  • [26] Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions
    Tomovski, Zivorad
    Hilfer, Rudolf
    Srivastava, H. M.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (11) : 797 - 814
  • [27] Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions
    Fernandez, Arran
    Baleanu, Dumitru
    Srivastava, H. M.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 : 517 - 527
  • [28] Certain Integrals Involving Generalized Mittag-Leffler Functions
    P. Agarwal
    M. Chand
    S. Jain
    [J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2015, 85 : 359 - 371
  • [29] Certain Integrals Involving Generalized Mittag-Leffler Functions
    Agarwal, P.
    Chand, M.
    Jain, S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2015, 85 (03) : 359 - 371
  • [30] The extended Mittag-Leffler function via fractional calculus
    Rahman, Gauhar
    Baleanu, Dumitru
    Al Qurashi, Maysaa
    Purohit, Sunil Dutt
    Mubeen, Shahid
    Arshad, Muhammad
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4244 - 4253