NON-IDENTITY OF R1 R2 R3 HETEROLOGOUS ANTIGENS WITH KUNINS COMMON ANTIGEN

被引:0
|
作者
CHERMANN, JC
DIGEON, M
RAYNAUD, M
机构
来源
ANNALES DE L INSTITUT PASTEUR | 1967年 / 112卷 / 01期
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
下载
收藏
页码:77 / &
相关论文
共 50 条
  • [21] On the nitsche conjecture for harmonic mappings in R2 and R3
    Kalaj, David
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 150 (1) : 241 - 251
  • [22] Embedding Plane 3-Trees in R2 and R3
    Durocher, Stephane
    Mondal, Debajyoti
    Nishat, Rahnuma Islam
    Rahman, Md Saidur
    Whitesides, Sue
    GRAPH DRAWING, 2012, 7034 : 39 - +
  • [23] Algorithms for determining the smallest number of nonterminals (states) sufficient for generating (accepting) a regular language R with R1⊆R⊆R2 for given regular languages R1, R2
    Hashiguchi, K
    THEORETICAL COMPUTER SCIENCE, 2002, 289 (01) : 853 - 859
  • [25] Uniqueness of meromorphic solutions of the difference equation R1(z)f(z+1)+R2(z)f(z)=R3(z)
    Li, Sheng
    Chen, BaoQin
    ADVANCES IN DIFFERENCE EQUATIONS, 2019,
  • [26] A novel 3D printed eye flow resistance model for intraocular pressure after glaucoma surgery: R1, R2 and R3
    Bouremel, Yann
    Henein, Christin
    Lee, Richard M. H.
    Eames, Ian
    Brocchini, Steve
    Khaw, Peng Tee
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [27] EFFICIENT EVALUATION OF INTEGRALS OF ORDER 1/R 1/R2, 1/R3 USING GAUSS QUADRATURE
    JUN, L
    BEER, G
    MEEK, JL
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1985, 2 (03) : 118 - 123
  • [28] A Krylov-Schur-like method for computing the best rank-(r1,r2,r3) approximation of large and sparse tensors
    Lars Eldén
    Maryam Dehghan
    Numerical Algorithms, 2022, 91 : 1315 - 1347
  • [29] A Krylov-Schur-like method for computing the best rank-(r1,r2,r3) approximation of large and sparse tensors
    Elden, Lars
    Dehghan, Maryam
    NUMERICAL ALGORITHMS, 2022, 91 (03) : 1315 - 1347
  • [30] 图C5(r1,r2,r3,0,0)∪St(m)的优美性
    吴跃生
    嘉应学院学报, 2012, 30 (08) : 5 - 8