QUALITATIVE BEHAVIOR OF SOLUTIONS OF A DEGENERATE NONLINEAR DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS

被引:59
|
作者
JUNGEL, A
机构
来源
关键词
D O I
10.1142/S0218202595000292
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with qualitative properties of transient solutions of a degenerate multidimensional quasi-hydrodynamic model for semiconductors with nonlinear diffusivities. For small time and sufficiently small initial and boundary data we show a local vanishing property of a solution. Furthermore it is shown that the carrier densities are bounded uniformly in time and are strictly positive uniformly in time if the recombination-generation rate satisfies some structural assumption. Finally we construct a Lyapunov functional in order to show convergence of the carrier distributions to the thermal equilibrium state as the time tends to infinity.
引用
收藏
页码:497 / 518
页数:22
相关论文
共 50 条
  • [31] A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients
    Bartier, Jean-Philippe
    Dolbeault, Jean
    Illner, Reinhard
    Kowalczyk, Michal
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (03): : 327 - 362
  • [32] Quasineutral limit of the drift-diffusion model for semiconductors with general initial data
    Schmeiser, C
    Wang, S
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (04): : 463 - 470
  • [33] Asymptotic Behavior of Solutions for the One-Dimensional Drift-Diffusion Model in the Quarter Plane
    ZHOU Fang
    [J]. Wuhan University Journal of Natural Sciences, 2014, 19 (02) : 144 - 148
  • [34] ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO DRIFT-DIFFUSION SYSTEM WITH GENERALIZED DISSIPATION
    Ogawa, Takayoshi
    Yamamoto, Masakazu
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 (06): : 939 - 967
  • [35] Bounded weak solutions to a matrix drift-diffusion model for spin-coherent electron transport in semiconductors
    Juengel, Ansgar
    Negulescu, Claudia
    Shpartko, Polina
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (05): : 929 - 958
  • [36] The study of a drift-diffusion model
    Abouchabaka, J
    Aboulaïch, R
    Nachaoui, A
    Souissi, A
    [J]. ICM 2001: 13TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, PROCEEDINGS, 2001, : 54 - 58
  • [37] Drift-diffusion crossover and the intrinsic spin diffusion lengths in semiconductors
    Miah, M. Idrish
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 103 (06)
  • [38] Nonlinear drift-diffusion model of gating in the fast Cl channel
    Vaccaro, S. R.
    [J]. PHYSICAL REVIEW E, 2007, 76 (01):
  • [39] THE DEGENERATE DRIFT-DIFFUSION SYSTEM WITH THE SOBOLEV CRITICAL EXPONENT
    Ogawa, Takayoshi
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (04): : 875 - 886
  • [40] ON THE UNIQUENESS OF SOLUTIONS TO THE DRIFT-DIFFUSION MODEL OF SEMICONDUCTOR-DEVICES
    GAJEWSKI, H
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (01): : 121 - 133