THE COMMUTING GRAPH ON THE FIBONACCI ORBITS OF GROUPS

被引:0
|
作者
Hashemi, Rasool [1 ]
机构
[1] NAS Azerbaijan, Inst Math & Mech, 9 Agayev Str, AZ-1141 Baku, Azerbaijan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a non-empty subset X of a finite group G, the commuting graph of G on X, denoted by C (G; X), is a graph with the vertex set X and two distinct vertices a and b are adjacent if a b = b a. In this paper we examine this graph when X = {x(1), x(2,) ...,x(1)} is the Fibonacci orbit of a class of metabelian groups.
引用
收藏
页码:33 / 38
页数:6
相关论文
共 50 条
  • [31] ON THE COMMUTING GRAPH OF RINGS
    Omidi, G. R.
    Vatandoost, E.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (03) : 521 - 527
  • [32] FIBONACCI ORBITS AND SU(2)-DYNAMICS
    WAGNER, H
    KRAMER, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (09): : 2563 - 2580
  • [33] Orbits of operators commuting with the Volterra operator
    Bermudo, Sergio
    Montes-Rodriguez, Alfonso
    Shkarin, Stanislav
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 89 (02): : 145 - 173
  • [34] Fuzzy homoclinic orbits and commuting fuzzifications
    Pederson, SM
    FUZZY SETS AND SYSTEMS, 2005, 155 (03) : 361 - 371
  • [35] Between the enhanced power graph and the commuting graph
    Cameron, Peter J.
    Kuzma, Bojan
    JOURNAL OF GRAPH THEORY, 2023, 102 (02) : 295 - 303
  • [36] Generalized Commuting Graph of Dihedral, Semi-dihedral and Quasi-dihedral Groups
    El-Sanfaz, Mustafa Anis
    Sarmin, Nor Haniza
    Zamri, Siti Norziahidayu Amzee
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2021, 17 (06): : 711 - 719
  • [37] Degree sum exponent distance energy of non-commuting graph for dihedral groups
    Romdhini, Mamika Ujianita
    Nawawi, Athirah
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, (51): : 427 - 442
  • [38] Szeged and Padmakar-Ivan Energies of Non-Commuting Graph for Dihedral Groups
    Romdhini, Mamika Ujianita
    Abdurahim, Salwa
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2024, 20 (05): : 1183 - 1191
  • [39] A Generalization of Fibonacci Groups
    V. G. Bardakov
    A. Yu. Vesnin
    Algebra and Logic, 2003, 42 (2) : 73 - 91