Iteration regularized semigroups of set-valued functions

被引:0
|
作者
Mosallanezhad, Masoud [1 ]
Janfada, Mohammad [2 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, Int Campus, Mashhad, Iran
[2] Ferdowsi Univ Mashhad, Dept Pure Math, POB 1159, Mashhad 91775, Iran
关键词
Iteration semigroups; iteration C-semigroups; concave iteration semigroup;
D O I
10.1515/jaa-2016-0013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a set-valued iteration regularized semigroup, i.e. a family {F-t}(t >= 0) of set-valued functions for which Fs+t circle C = F-s circle F-t, F-0 = C, s, t >= 0, will be considered, where C is a set-valued function on a closed convex cone in a Banach space. Under some appropriate conditions the generator of a set-valued regularized concave semigroup is introduced and some of its properties are investigated. Also differentiability of the iteration family {C circle F-t}(t >= 0) is discussed.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 50 条
  • [41] Continuity concepts for set-valued functions and a fundamental duality formula for set-valued optimization
    Heyde, Frank
    Schrage, Carola
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (02) : 772 - 784
  • [42] Choquet integral Jensen's inequalities for set-valued and fuzzy set-valued functions
    Zhang, Deli
    Guo, Caimei
    Chen, Degang
    Wang, Guijun
    [J]. SOFT COMPUTING, 2021, 25 (02) : 903 - 918
  • [43] Choquet integral Jensen’s inequalities for set-valued and fuzzy set-valued functions
    Deli Zhang
    Caimei Guo
    Degang Chen
    Guijun Wang
    [J]. Soft Computing, 2021, 25 : 903 - 918
  • [44] CONTINUITY OF SUBQUADRATIC SET-VALUED FUNCTIONS
    Troczka-Pawelec, Katarzyna
    [J]. DEMONSTRATIO MATHEMATICA, 2012, 45 (04) : 939 - 946
  • [45] CLOSURE OF INTEGRALS OF SET-VALUED FUNCTIONS
    BYRNE, C
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A535 - A536
  • [46] On Nemytskii operator for set-valued functions
    Szczawinska, J
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1999, 54 (3-4): : 327 - 347
  • [47] ANALYTIC SET-VALUED FUNCTIONS AND SPECTRA
    SLODKOWSKI, Z
    [J]. MATHEMATISCHE ANNALEN, 1981, 256 (03) : 363 - 386
  • [48] APPROXIMATION OF CONVEX SET-VALUED FUNCTIONS
    VITALE, RA
    [J]. JOURNAL OF APPROXIMATION THEORY, 1979, 26 (04) : 301 - 316
  • [49] Approximately Midconvex Set-Valued Functions
    Mirmostafaee, Alireza Kamel
    Mahdavi, Mostafa
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (02) : 525 - 530
  • [50] On the best approximation of set-valued functions
    Ginchev, I
    Hoffmann, A
    [J]. RECENT ADVANCES IN OPTIMIZATION, 1997, 452 : 61 - 74