The dual space of precompact groups

被引:0
|
作者
Ferrer, M. [1 ]
Hernandez, S. [2 ,3 ]
Uspenskij, V. [4 ]
机构
[1] Uni Jaume I, Inst Math Castellon, Campus Riu Sec, F-12071 Castellon, France
[2] Univ Jaume 1, INIT, Castellon de La Plana 12071, Spain
[3] Univ Jaume 1, Dept Math, Castellon de La Plana 12071, Spain
[4] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
compact group; precompact group; representation; Pontryagin-van Kampen duality; compact-open topology; Fell dual space; Fell topology; Kazhdan property (T);
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any topological group G the dual object (G) over cap is defined as the set of equivalence classes of irreducible unitary representations of G equipped with the Fell topology. If G is compact, (G) over cap is discrete. In an earlier paper we proved that (G) over cap is discrete for everymetrizable precompact group, i.e. a dense subgroup of a compact metrizable group. We generalize this result to the case when G is an almost metrizable precompact group.
引用
收藏
页码:239 / 244
页数:6
相关论文
共 50 条
  • [41] On positive precompact operators
    Aqzzouz, B
    Nouira, R
    COMPTES RENDUS MATHEMATIQUE, 2003, 337 (08) : 527 - 530
  • [42] CHARACTERIZATION OF PRECOMPACT OPERATORS
    LAI, PT
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (12): : 750 - &
  • [43] AUTOMORPHISM GROUPS OF SPACE GROUPS
    MAXWELL, G
    COMMUNICATIONS IN ALGEBRA, 1978, 6 (14) : 1489 - 1496
  • [44] PRECOMPACT UNIFORMITIES AND WALLMAN COMPACTIFICATIONS
    STEINER, AK
    STEINER, EF
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1968, 71 (01): : 117 - &
  • [45] PRECOMPACT, TOTALLY BOUNDED AND BOUNDED FILTERS
    LECHICKI, A
    ZIEMINSKA, J
    MATHEMATISCHE NACHRICHTEN, 1986, 126 : 171 - 181
  • [46] Characterizing sequences for precompact group topologies
    Dikranjan, D.
    Gabriyelyan, S. S.
    Tarieadze, V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 505 - 519
  • [47] THE BAIRE PROPERTY AND PRECOMPACT DUALITY
    Ferrer, M.
    Hernández, S.
    Sepúlveda, I.
    Trigos-Arrieta, F.J.
    arXiv,
  • [48] Weight of precompact subsets and tightness
    Cascales, B
    Kakol, J
    Saxon, SA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (02) : 500 - 518
  • [49] The Group Aut(μ) is Roelcke Precompact
    Glasner, Eli
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (02): : 297 - 302
  • [50] Another note on precompact uniform frames
    Bhattacharjee, P.
    Naidoo, I
    TOPOLOGY AND ITS APPLICATIONS, 2020, 275