OPTIMAL CHOICE OF SAMPLE FRACTION IN EXTREME-VALUE ESTIMATION

被引:76
|
作者
DEKKERS, ALM [1 ]
DEHAAN, L [1 ]
机构
[1] ERASMUS UNIV ROTTERDAM,3000 DR ROTTERDAM,NETHERLANDS
关键词
EXTREME-VALUE THEORY; ORDER STATISTICS; ASYMPTOTIC NORMALITY; MEAN SQUARED ERROR; REGULAR VARIATION; PI-VARIATION; INVERSE COMPLEMENTARY FUNCTION;
D O I
10.1006/jmva.1993.1078
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the asymptotic bias of the moment estimator γ̂n for the extreme-value index γ ∈ R under quite natural and general conditions on the underlying distribution function. Furthermore the optimal choice for the sample franction in estimating γ is considered by minimizing the mean squared error of γ̂n - γ. The results cover all three limiting types of extreme-value theory. The connection between statistics and regular variation and Π-variation is handled in a systematic way. © 1993 Academic Press, Inc.
引用
收藏
页码:173 / 195
页数:23
相关论文
共 50 条
  • [41] Dam design flood estimation based on bivariate extreme-value distributions
    Aldama, Álvaro A.
    Ramírez, Aldo I.
    [J]. IAHS-AISH Publication, 2002, (271): : 257 - 262
  • [42] Distribution and dependence-function estimation for bivariate extreme-value distributions
    Hall, P
    Tajvidi, N
    [J]. BERNOULLI, 2000, 6 (05) : 835 - 844
  • [43] Dam design flood estimation based on bivariate extreme-value distributions
    Aldama, AA
    Ramírez, AI
    [J]. EXTREMES OF THE EXTREMES: EXTRAORDINARY FLOODS, 2002, (271): : 257 - 262
  • [44] A Method for Estimation of Extreme Values of Wind Pressure on Buildings Based on the Generalized Extreme-Value Theory
    Quan, Yong
    Wang, Fei
    Gu, Ming
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [45] Optimal parameter estimation of the extreme value distribution based on a Type II censored sample
    Wu, JW
    Li, PL
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (03) : 533 - 554
  • [46] Gini characterization of extreme-value statistics
    Eliazar, Iddo I.
    Sokolov, Igor M.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (21) : 4462 - 4472
  • [47] Galaxy distribution and extreme-value statistics
    Antal, T.
    Labini, F. Sylos
    Vasilyev, N. L.
    Baryshev, Y. V.
    [J]. EPL, 2009, 88 (05)
  • [48] Weibull, RRSB or extreme-value theorists?
    Dietrich Stoyan
    [J]. Metrika, 2013, 76 : 153 - 159
  • [49] An Estimator for the Extreme-Value Index Finance
    Draisma, G.
    De Haan, L.
    [J]. Communications in Statistics. Part A: Theory and Methods, 1996, 25 (04):
  • [50] Weibull, RRSB or extreme-value theorists?
    Stoyan, Dietrich
    [J]. METRIKA, 2013, 76 (02) : 153 - 159