ON THE UNIQUENESS OF THE SOLUTION TO THE DRIFT-DIFFUSION MODEL IN SEMICONDUCTOR ANALYSIS

被引:1
|
作者
NACHAOUI, A
NASSIF, NR
机构
[1] UNIV NANTES,INST MATH & INFORMAT,F-44035 NANTES,FRANCE
[2] AMER UNIV BEIRUT,DEPT MATH,BEIRUT,LEBANON
[3] UNIV REIMS,DEPT MATH,F-51100 REIMS,FRANCE
[4] UNIV RENNES 1,INST RECH MATH AVANCEE,F-35010 RENNES,FRANCE
关键词
D O I
10.1108/eb010099
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is concerned with the analysis of global uniqueness of the solution to the drift-diffusion models, [9], for stationary flow of charges carriers in semiconductor devices. Two uniqueness cases ate found. Firstly, small applied voltages with a proof introducing new 'quasi-monotony condition' verified for solutions in W1,4-delta and not necessarily in H-2. Secondly, large applied voltage to the semiconductor with small 2D domain, and not large doping functions. These uniqueness cases allow the construction of algorithms that yield converging sequences of solutions.
引用
收藏
页码:377 / 390
页数:14
相关论文
共 50 条
  • [31] Group analysis of the drift-diffusion model for quantum semiconductors
    Ibragimov, N. H.
    Khamitova, R.
    Avdonina, E. D.
    Galiakberova, L. R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (01) : 74 - 78
  • [32] QUESTIONABILITY OF DRIFT-DIFFUSION TRANSPORT IN ANALYSIS OF SMALL SEMICONDUCTOR-DEVICES
    ROHR, P
    LINDHOLM, FA
    ALLEN, KR
    SOLID-STATE ELECTRONICS, 1974, 17 (07) : 729 - 734
  • [33] FINITE-ELEMENT ANALYSIS OF THE ONE-DIMENSIONAL FULL DRIFT-DIFFUSION SEMICONDUCTOR MODEL
    CHEN, ZX
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (02) : 455 - 483
  • [34] Nonlinear diffusion, boundary layers and nonsmoothness: Analysis of challenges in drift-diffusion semiconductor simulations
    Farrell, Patricio
    Peschka, Dirk
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (12) : 3731 - 3747
  • [35] The Stability Criterion of a Semiconductor Superlattice in the Drift-Diffusion Approximation
    Zhukovskii, V. Ch
    Prudskikh, N. S.
    Golovatyuk, S. E.
    Krevchik, V. D.
    Semenov, M. B.
    Shorokhov, A. V.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2018, 73 (04) : 398 - 400
  • [36] An HDG Method for the Time-dependent Drift-Diffusion Model of Semiconductor Devices
    Chen, Gang
    Monk, Peter
    Zhang, Yangwen
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) : 420 - 443
  • [37] The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model
    Gasser, I
    Levermore, CD
    Markowich, PA
    Schmeiser, C
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2001, 12 : 497 - 512
  • [38] Existence of weak solution and semiclassical limit for quantum drift-diffusion model
    Chen, Li
    Ju, Qiangchang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (01): : 1 - 15
  • [39] Generalized Drift-Diffusion Model In Semiconductors
    Mesbah, S.
    Bendib-Kalache, K.
    Bendib, A.
    LASER AND PLASMA APPLICATIONS IN MATERIALS SCIENCE, 2008, 1047 : 252 - 255
  • [40] An existence of stationary solutions for the Drift-Diffusion Semiconductor equations
    Guo, XL
    Xing, JS
    Ling, H
    DYNAMIC SYSTEMS AND APPLICATIONS, 2002, 11 (04): : 521 - 529