LEAST CHANGE SECANT UPDATES FOR QUASI-NEWTON METHODS

被引:138
|
作者
DENNIS, JE [1 ]
SCHNABEL, RB [1 ]
机构
[1] UNIV COLORADO,DEPT COMP SCI,BOULDER,CO 80309
关键词
D O I
10.1137/1021091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:443 / 459
页数:17
相关论文
共 50 条
  • [21] Quasi-Newton Methods for Nonlinear Least Squares Focusing on Curvatures
    Jerry Eriksson
    [J]. BIT Numerical Mathematics, 1999, 39 : 228 - 254
  • [22] Global convergence of quasi-Newton methods based on adjoint Broyden updates
    Schlenkrich, Sebastian
    Walther, Andrea
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (05) : 1120 - 1136
  • [23] Generalization of Quasi-Newton Methods: Application to Robust Symmetric Multisecant Updates
    Scieur, Damien
    Liu, Lewis
    Pumir, Thomas
    Boumal, Nicolas
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 550 - +
  • [24] STABILIZATION OF THE SECANT METHOD VIA QUASI-NEWTON APPROACH
    BURDAKOY, OP
    [J]. LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1986, 84 : 141 - 152
  • [25] THE QUASI-NEWTON LEAST SQUARES METHOD: A NEW AND FAST SECANT METHOD ANALYZED FOR LINEAR SYSTEMS
    Haelterman, Rob
    Degroote, Joris
    Van Heule, Dirk
    Vierendeels, Jan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2347 - 2368
  • [26] A structured secant method based on a new quasi-Newton equation for nonlinear least squares problems
    Zhang, JZ
    Xue, Y
    Zhang, K
    [J]. BIT, 2003, 43 (01): : 217 - 229
  • [27] A Structured Secant Method Based on a New Quasi-Newton Equation for Nonlinear Least Squares Problems
    J. Z. Zhang
    Y. Xue
    K. Zhang
    [J]. BIT Numerical Mathematics, 2003, 43 : 217 - 229
  • [28] Diagonal quasi-Newton methods via least change updating principle with weighted Frobenius norm
    Wah June Leong
    Sharareh Enshaei
    Sie Long Kek
    [J]. Numerical Algorithms, 2021, 86 : 1225 - 1241
  • [29] Diagonal quasi-Newton methods via least change updating principle with weighted Frobenius norm
    Leong, Wah June
    Enshaei, Sharareh
    Kek, Sie Long
    [J]. NUMERICAL ALGORITHMS, 2021, 86 (03) : 1225 - 1241
  • [30] FACTORIZED QUASI-NEWTON METHODS FOR NONLINEAR LEAST-SQUARES PROBLEMS
    YABE, H
    TAKAHASHI, T
    [J]. MATHEMATICAL PROGRAMMING, 1991, 51 (01) : 75 - 100