MOSCO CONVERGENCE IN LOCALLY CONVEX-SPACES

被引:7
|
作者
ZABELL, SL [1 ]
机构
[1] NORTHWESTERN UNIV,DEPT STAT,EVANSTON,IL 60208
关键词
D O I
10.1016/0022-1236(92)90047-M
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E and F be a pair of locally convex spaces in duality, with σ and τ the weak and Mackey topologies on E. A sequence of functions {fn} on E is said to be Mosco-convergent to another function f0, denoted fn M → f0, if for every v ε{lunate} E, lim supn → t8 fn(vn) ≤ f0(v) for some sequence vn t → v, and lim infn → ∞ fn(vn) ≥ f0(v) for every sequence vn δ → v. In this paper it is shown that if F is a separable Fréchet space, {fn: n ≥ 1} a sequence of proper, lower semicontinuous convex functions, and fn* the convex conjugate of fn, then fn M → f0 ⇒ f*n M → f*n if f0(v) < ∞ for some v ε{lunate} E. © 1992.
引用
收藏
页码:226 / 246
页数:21
相关论文
共 50 条