INVERSE PROBLEM FOR THE DISSIPATIVE WAVE-EQUATION IN A STRATIFIED HALF-SPACE AND LINEARIZATION OF THE IMBEDDING EQUATIONS

被引:23
|
作者
HE, SL [1 ]
WESTON, VH [1 ]
机构
[1] PURDUE UNIV,DEPT MATH,W LAFAYETTE,IN 47907
关键词
D O I
10.1088/0266-5611/8/3/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The invariant imbedding procedure with a modified planar wave-splitting process is applied to the dissipative wave equation for a smooth stratified medium. The imbedding equations for R0 and R2, respectively the zeroth and second moments of the kernel of the reflection operator, are obtained. A linearization of the nonlinear imbedding equation for R0 is given, which greatly simplifies the numerical procedure and improves the speed one order in the direct and inverse problems. Numerical results are given for the direct problem, and for the inverse problem where the zeroth and second transverse moments of the reflection data are given on one side.
引用
收藏
页码:435 / 455
页数:21
相关论文
共 50 条
  • [31] AN INVERSE PROBLEM FOR THE WAVE-EQUATION BASED ON A UNIQUENESS THEOREM
    ELBADIA, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (09): : 895 - 900
  • [32] A METHOD OF SOLVING THE INVERSE SCATTERING PROBLEM FOR THE WAVE-EQUATION
    BAYEV, AV
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1988, 28 (01): : 15 - 21
  • [33] ON AN INVERSE PROBLEM FOR 1-DIMENSIONAL WAVE-EQUATION
    ZHANG, GQ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1989, 32 (03): : 257 - 274
  • [34] ONE-DIMENSIONAL INVERSE PROBLEM FOR A WAVE-EQUATION
    ROMANOV, VG
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (05): : 1083 - 1084
  • [35] UNIQUENESS THEOREM FOR SOLUTIONS TO AN INVERSE PROBLEM FOR WAVE-EQUATION
    ANIKONOV, YE
    MATHEMATICAL NOTES, 1976, 19 (1-2) : 127 - 128
  • [36] A NEW METHOD FOR THE SOLUTION OF AN INVERSE PROBLEM FOR THE WAVE-EQUATION
    AGOSHKOV, VI
    MAGGIO, F
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (05): : 741 - 754
  • [37] AN INVERSE PROBLEM FOR AN UNKNOWN SOURCE TERM IN A WAVE-EQUATION
    CANNON, JR
    DUCHATEAU, P
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (03) : 553 - 564
  • [38] NUMERICAL-SOLUTION OF AN INVERSE PROBLEM FOR THE WAVE-EQUATION
    MEYN, KH
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (05): : T295 - T296
  • [39] Inverse problem of multiple conductors buried in a half-space
    Lu HungCheng
    Chiu ChienChing
    Lai Eugene
    ICEMI 2007: PROCEEDINGS OF 2007 8TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL II, 2007, : 213 - 217
  • [40] Inverse Problem of Multiple Objects Buried in a Half-space
    Chien, W.
    Sun, C. H.
    Chiu, C. C.
    Chuang, W. C.
    PIERS 2009 BEIJING: PROGESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS I AND II, 2009, : 261 - +