RuO2/IrO2 nanoparticles decorated TiO2 nanotube arrays for improved activity towards chlorine evolution reaction

被引:0
|
作者
Cheng, Wentao [1 ]
Liu, Yilin [1 ]
Wu, Li [2 ]
Chen, Rongsheng [1 ]
Wang, Jiaxin [1 ]
Chang, Shuai [1 ]
Ma, Feng [1 ]
Li, Yang [1 ]
Ni, Hongwei [1 ]
机构
[1] Wuhan Univ Sci & Technol, Inst Adv Mat & Nanotechnol, Sch Chem & Chem Engn, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[2] Huangshi Prod Qual Supervis & Inspection Inst, Huangshi 435000, Hubei, Peoples R China
关键词
Dimensionally stable anodes; TiO 2 nanotube arrays; Chlorine evolution reactions; Oxygen evolution reaction; One-dimensional nanostructure;
D O I
暂无
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Dimensionally stable anodes (DSA) have been extensively employed for industrial chlorine evolution reactions (CER). Many efforts have been made to develop nanostructured DSA electrodes to enhance the stability and catalytic activity of CER. Herein, a composite catalyst composed of RuO2/IrO2 decorated TiO2 nanotube arrays (TiO2 NTAs) was proposed for CER applications. 1D TiO2 NTAs were fabricated by electrochemical anodization. RuO2/IrO2 nanoparticles were embedded in TiO2 NTAs by electrochemical deposition. Catalytic activity of RuO2/IrO2-TiO2 NTAs is superior to most CER materials. At a current density of 50 mA cm_ 2, the overpotential is 1.115 V (vs. SCE) with a Tafel slope of 33.5 mV dec_ 1 in 5 M NaCl. The RuO2/IrO2-TiO2 NTAs exhibit good selectivity towards oxygen evolution reaction, with a potential separation of 205 mV at 50 mA cm_ 2. The RuO2/ IrO2-TiO2 NTAs also display excellent stability for CER. Almost no attenuation is observed after 50 h test.
引用
收藏
页码:26 / 34
页数:9
相关论文
共 50 条
  • [21] ELECTRICAL TRANSPORT PROPERTIES OF IRO2 AND RUO2
    RYDEN, WD
    LAWSON, AW
    PHYSICAL REVIEW B, 1970, 1 (04): : 1494 - &
  • [22] Chlorine evolution reaction electrocatalysis on RuO2(110) and IrO2(110) grown using molecular-beam epitaxy
    Kuo, Ding-Yuan
    Paik, Hanjong
    Nelson, Jocienne N.
    Shen, Kyle M.
    Schlom, Darrell G.
    Suntivich, Jin
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (04):
  • [23] Preparation and photocatalytic properties of RuO2/TiO2 composite nanotube arrays
    Wang, Zhumei
    Liu, Bo
    Xie, Zhixiang
    Li, Yueming
    Shen, Zong-Yang
    CERAMICS INTERNATIONAL, 2016, 42 (12) : 13664 - 13669
  • [24] Electronic and optical properties of RuO2 and IrO2
    de Almeida, JS
    Ahuja, R
    PHYSICAL REVIEW B, 2006, 73 (16)
  • [25] IrO2 deposited on RuO2 as core-shell structured RuO2@IrO2 for oxygen evolution reaction in electrochemical water electrolyzer
    Li, Huibin
    Pan, Yinzhi
    Wu, Lei
    He, Rui
    Qin, Zirong
    Luo, Shasha
    Yang, Lijun
    Zeng, Jianhuang
    MOLECULAR CATALYSIS, 2023, 551
  • [26] Stability and Solvation of Key Intermediates of Oxygen Evolution on TiO2, RuO2, IrO2 (110) Surfaces: A Comparative DFT Study
    Inico, Elisabetta
    Di Liberto, Giovanni
    Giordano, Livia
    CHEMCATCHEM, 2024, 16 (21)
  • [27] Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions
    Lee, Youngmin
    Suntivich, Jin
    May, Kevin J.
    Perry, Erin E.
    Shao-Horn, Yang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (03): : 399 - 404
  • [28] Corrosion mechanism and stabilization strategies for RuO2 and IrO2 catalysts in the electrochemical oxygen evolution reaction
    Hess, Franziska
    CURRENT OPINION IN ELECTROCHEMISTRY, 2023, 41
  • [29] Tantalum oxide effect on the surface structure and morphology of the IrO2 and IrO2 + RuO2 + TiO2 coatings and on the corrosion and electrochemical properties of anodes prepared from these
    V. V. Gorodetskii
    V. A. Neburchilov
    Russian Journal of Electrochemistry, 2007, 43 : 223 - 228
  • [30] Photodeposited IrO2 on TiO2 support as a catalyst for oxygen evolution reaction
    Dimitrova, N.
    Banti, A.
    Spyridou, O-N
    Papaderakis, A.
    Georgieva, J.
    Sotiropoulos, S.
    Valova, E.
    Armyanov, S.
    Tatchev, D.
    Hubin, A.
    Baert, K.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 900 (900)