FIFTH-ORDER HOLOGRAM ABERRATIONS

被引:26
|
作者
LATTA, JN
机构
来源
APPLIED OPTICS | 1971年 / 10卷 / 03期
关键词
D O I
10.1364/AO.10.000666
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:666 / &
相关论文
共 50 条
  • [41] Melnikov analysis for a dissipative fifth-order system
    Bekki, N
    Karakisawa, T
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2001, 8 (04): : 591 - 612
  • [42] Solvability of a nonlinear fifth-order difference equation
    Stevic, Stevo
    Iricanin, Bratislav
    Kosmala, Witold
    Smarda, Zdenek
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (05) : 1687 - 1701
  • [43] Regular Fifth-Order Boundary Value Problems
    Ekin Uğurlu
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2105 - 2121
  • [44] Rough solutions of the fifth-order KdV equations
    Guo, Zihua
    Kwak, Chulkwang
    Kwon, Soonsik
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (11) : 2791 - 2829
  • [45] Fifth-order sigma delta modulator with decimation
    Foo, S
    Moss, P
    Norton, T
    Stafford, D
    PROCEEDINGS OF THE THIRTY-SIXTH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2004, : 522 - 526
  • [46] Some remarks on the fifth-order KdV equations
    Lee, C. T.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (01) : 281 - 294
  • [47] STABILITY OF A FIFTH-ORDER NONLINEAR DIFFERENTIAL EQUATION
    SINHA, ASC
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1971, 59 (09): : 1382 - &
  • [48] A Novel Fifth-Order Higher Bucking Converter
    Misal, Shrikant
    Veerachary, M.
    2016 7TH INDIA INTERNATIONAL CONFERENCE ON POWER ELECTRONICS (IICPE), 2016,
  • [49] Computational method for the fifth-order KdV equation
    Zuo, Jin-Ming
    Zhang, Yao-Ming
    Zhang, Rui
    2010 SECOND ETP/IITA WORLD CONGRESS IN APPLIED COMPUTING, COMPUTER SCIENCE, AND COMPUTER ENGINEERING, 2010, : 20 - 23
  • [50] Detonation Simulations with a Fifth-Order TENO Scheme
    Dong, Haibo
    Fu, Lin
    Zhang, Fan
    Liu, Yu
    Liu, Jun
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 25 (05) : 1357 - 1393