PYRIDINE HYDROGENATION AND PIPERIDINE HYDROGENOLYSIS ON A COMMERCIAL HYDROCRACKING CATALYST .1. REACTION AND DEACTIVATION KINETICS

被引:21
|
作者
HADJILOIZOU, GC [1 ]
BUTT, JB [1 ]
DRANOFF, JS [1 ]
机构
[1] NORTHWESTERN UNIV,DEPT CHEM ENGN,EVANSTON,IL 60208
关键词
D O I
10.1016/0021-9517(91)90285-C
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The vapor phase kinetics of pyridine hydrogenation over a commercial fresh hydrocracking catalyst were studied in a continuous-flow fixed-bed reactor and the feasibility of this reaction as a probe for characterizing the catalyst was examined. Kinetic experiments at total pressures of 13.01 to 13.48 atm, temperatures of 312 to 334°C, and initial pyridine partial pressures of 0.116 to 0.483 atm indicated that pyridine hydrogenation to piperidine was the predominant reaction and that the reaction rate was first order in pyridine. The feasibility of piperidine hydrogenolysis as a probe for characterizing dual-functional catalysts was also examined and the reaction and deactivation kinetics of this system were studied in the above reactor operating at integral conversions. The kinetic studies were conducted at total pressures of 15.86 to 16.14 atm, temperatures ranging from 281 to 321°C, and initial concentrations of piperidine from 4.03 to 11.84 × 10-3 mol/liter. Product distributions revealed that the predominant reactions were only those converting piperidine to other nitrogen-containing compounds. Both the metallic and acidic catalyst functions were active simultaneously in the conversion reactions and both were deactivated under conditions of the experiments. To offset catalyst deactivation effects, the conversion data were extrapolated to zero time on stream. The kinetic parameters were determined using a reaction-deactivation model based on separable kinetics. The reaction rate data were best fit to Langmuir-Hinshelwood type expressions proposing two different catalytic sites for hydrogen and nitrogen compound adsorption. © 1991.
引用
收藏
页码:545 / 572
页数:28
相关论文
共 50 条
  • [41] HYDROGENATION OF LIGHT PYRIDINE BASES OVER A COMMERCIAL NICKEL-CHROMIUM CATALYST
    SUKHORUK.VP
    CHERKASO.AM
    [J]. COKE & CHEMISTRY USSR, 1970, (07): : 39 - &
  • [42] Catalyst deactivation, kinetics, and product quality of mild hydrocracking of bitumen-derived heavy gas oils
    Yui, S
    Dodge, T
    [J]. PETROLEUM SCIENCE AND TECHNOLOGY, 2006, 24 (3-4) : 351 - 365
  • [43] CATALYTIC HYDROGENATION .1. KINETICS AND CATALYST COMPOSITION IN THE PREPARATION OF 2-METHYLFURAN
    MANLY, DG
    DUNLOP, AP
    [J]. JOURNAL OF ORGANIC CHEMISTRY, 1958, 23 (08): : 1093 - 1095
  • [44] A KINETIC-MODEL OF DEACTIVATION OF A NICKEL-CATALYST IN THE REACTION OF HYDROGENATION OF BENZENE
    MASAGUTOV, RM
    SPIVAK, SI
    KOVALEVA, LV
    MOROZOV, BF
    YAROPOLOVA, EA
    [J]. KINETICS AND CATALYSIS, 1988, 29 (03) : 615 - 620
  • [45] CATALYST DEACTIVATION .1. CHEMICAL AND KINETIC ASPECTS
    FORZATTI, P
    FERRARIS, GB
    MORBIDELLI, M
    CARRA, S
    [J]. CHIMICA & L INDUSTRIA, 1981, 63 (09): : 575 - 586
  • [46] THE CATALYTIC HYDROGENATION OF UNSATURATED HYDROCARBONS .1. THE KINETICS OF THE HYDROGENATION OF ACETYLENE OVER A NICKEL-PUMICE CATALYST
    BOND, GC
    [J]. JOURNAL OF THE CHEMICAL SOCIETY, 1958, (AUG): : 2705 - 2719
  • [47] RATE FACTORS IN LIQUID PHASE HYDROGENATION .1. KINETICS OF HYDROGENATION OF COTTONSEED OIL IN PRESENCE OF A SOLID CATALYST
    PIHL, M
    SCHOON, NH
    [J]. ACTA POLYTECHNICA SCANDINAVICA-CHEMISTRY INCLUDING METALLURGY SERIES, 1971, (100): : 3 - &
  • [48] PALLADIUM ON ALUMINA CATALYST FOR GLUCOSE-OXIDATION - REACTION-KINETICS AND CATALYST DEACTIVATION
    NIKOV, I
    PAEV, K
    [J]. CATALYSIS TODAY, 1995, 24 (1-2) : 41 - 47
  • [49] AROMATICS REDUCTION OVER SUPPORTED PLATINUM CATALYSTS .1. EFFECT OF SULFUR ON THE CATALYST DEACTIVATION OF TETRALIN HYDROGENATION
    CHIOU, JF
    HUANG, YL
    LIN, TB
    CHANG, JR
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1995, 34 (12) : 4277 - 4283
  • [50] Hydrocracking and hydrotreating reaction kinetics of heavy oil in CSTR using a dispersed catalyst
    Pham, Hung Hai
    Kim, Kwang Ho
    Go, Kang Seok
    Nho, Nam Sun
    Kim, Woohyun
    Kwon, Eun Hee
    Jung, Ryu Ho
    Lim, Young-il
    Lim, Suk Hyun
    Pham, Dung Anh
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 197