REPEATED EDGES IN 2-FACTORIZATIONS

被引:5
|
作者
COLBOURN, CJ [1 ]
ROSA, A [1 ]
机构
[1] MCMASTER UNIV,DEPT MATH & STAT,HAMILTON L8S 4K1,ONTARIO,CANADA
关键词
D O I
10.1002/jgt.3190140103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The spectrum of numbers of repeated edges in 2‐factorizations of 2Kn is determined for all n. The techniques employed are direct, using isomorphic factorizations of Kn, and closely related factorizations. Copyright © 1990 Wiley Periodicals, Inc., A Wiley Company
引用
收藏
页码:5 / 24
页数:20
相关论文
共 50 条
  • [21] The anti-oberwolfach solution: Pancyclic 2-factorizations of complete graphs
    Stevens, B
    [J]. LATIN 2000: THEORETICAL INFORMATICS, 2000, 1776 : 115 - 122
  • [22] On 2-Factorizations of the Complete Graph: From the k-Pyramidal to the Universal Property
    Bonvicini, Simona
    Mazzuoccolo, Giuseppe
    Rinaldi, Gloria
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2009, 17 (03) : 211 - 228
  • [23] Some New Results on 1-Rotational 2-Factorizations of the Complete Graph
    Traetta, Tommaso
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2010, 18 (04) : 237 - 247
  • [24] The number of triangles in 2-factorizations of K2n minus a 1-factor
    Meng, Xianchen
    Zhang, Yan
    Du, Beiliang
    [J]. UTILITAS MATHEMATICA, 2013, 90 : 345 - 368
  • [25] The number of 4-cycles in 2-factorizations of K2n minus a 1-factor
    Adams, P
    Billington, EJ
    Dejter, IJ
    Lindner, CC
    [J]. DISCRETE MATHEMATICS, 2000, 220 (1-3) : 1 - 11
  • [26] The number of 8-cycles in 2-factorizations of K2n minus a 1-factor
    Küçükçifçi, S
    [J]. UTILITAS MATHEMATICA, 2002, 61 : 225 - 237
  • [28] On 2-Factorizations of the Complete 3-Uniform Hypergraph of Order 12 Minus a 1-Factor
    Adams, Peter
    El-Zanati, Saad, I
    Florido, Peter
    Turner, William
    [J]. COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 325 - 331
  • [29] The Directed Anti-Oberwolfach Solution: Pancyclic 2-factorizations of complete directed graphs of odd order
    Stevens, Brett
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2002, 9
  • [30] Constructing uniform 2-factorizations via row-sum matrices: Solutions to the Hamilton-Waterloo problem
    Burgess, A. C.
    Danziger, P.
    Pastine, A.
    Traetta, T.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 201