TOTALLY BOUNDED ENDOMORPHISMS ON A TOPOLOGICAL RING

被引:0
|
作者
Mirzavaziri, Madjid [1 ]
Zabeti, Omid [1 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Pure Math, POB 1159, Mashhad 91775, Iran
来源
MATEMATICKI VESNIK | 2013年 / 65卷 / 03期
关键词
Totally bounded endomorphism; completeness; topological ring;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a topological ring. In this paper, we consider the three classes (btb-bounded, tbtb-bounded, and tbb-bounded) of endomorphisms defined on X and denote these classes by B-btb(X), B-tbtb(X), and B-tbtb(X), respectively. We equip them with an appropriate topology and we find some sufficient conditions under which, each class of these endomorphisms is complete.
引用
下载
收藏
页码:419 / 424
页数:6
相关论文
共 50 条
  • [41] MAXIMUM IDEALS FOR A RING OF ENDOMORPHISMS OF AN IDEAL
    LAFON, JP
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1969, 239 : 88 - &
  • [42] On the Monoid of Unital Endomorphisms of a Boolean Ring
    Al Subaiei, Bana
    Jarboui, Noomen
    AXIOMS, 2021, 10 (04)
  • [43] REFLEXIVE PROPERTY SKEWED BY RING ENDOMORPHISMS
    Kwak, Tai Keun
    Lee, Yang
    Yun, Sang Jo
    KOREAN JOURNAL OF MATHEMATICS, 2014, 22 (02): : 217 - 234
  • [44] ENDOMORPHISMS OF A LATTICE OF CLOSED SUBGROUPS OF A TOPOLOGICAL GROUP
    MUKHIN, YN
    DOKLADY AKADEMII NAUK SSSR, 1969, 189 (01): : 42 - &
  • [45] Noncommutative Topological Entropy of Endomorphisms of Cuntz Algebras
    Adam Skalski
    Joachim Zacharias
    Letters in Mathematical Physics, 2008, 86 : 115 - 134
  • [46] ENTROPY OF RING ENDOMORPHISMS - PRELIMINARY REPORT
    SCHLOSSER, M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A76 - A76
  • [47] Summability of a ring of endomorphisms of vector groups
    A. M. Sebel’din
    Algebra and Logic, 1998, 37 (1) : 48 - 55
  • [48] On the ring of inertial endomorphisms of an abelian group
    Dardano U.
    Rinauro S.
    Ricerche di Matematica, 2014, 63 (Suppl 1) : 103 - 115
  • [49] Topological obstructions for robustly transitive endomorphisms on surfaces
    Lizana, C.
    Ranter, W.
    ADVANCES IN MATHEMATICS, 2021, 390
  • [50] TOPOLOGICAL AND METRIC PROPERTIES OF ONE DIMENSIONAL ENDOMORPHISMS
    IAKOBSON, MV
    DOKLADY AKADEMII NAUK SSSR, 1978, 243 (04): : 866 - 869