THE INFLUENCE FUNCTIONS FOR THE LEAST TRIMMED SQUARES AND THE LEAST TRIMMED ABSOLUTE DEVIATIONS ESTIMATORS

被引:21
|
作者
TABLEMAN, M [1 ]
机构
[1] PORTLAND STATE UNIV,DEPT MATH SCI,PORTLAND,OR 97207
关键词
BREAKDOWN POINT; GROSS-ERROR SENSITIVITY; INFLUENCE FUNCTION; LEAST TRIMMED ABSOLUTE DEVIATIONS; LEAST TRIMMED SQUARES; LOCAL-SHIFT SENSITIVITY; REJECTION POINT; ROBUST;
D O I
10.1016/0167-7152(94)90186-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The influence functions for Rousseeuw's (1987) least trimmed squares (LTS) estimator and for Tableman's (1994) least trimmed absolute deviations (LTAD) estimator are derived in the univariate case. The half-sample estimators which possess, by construction, the 50% breakdown point property satisfy three of the four robustness criteria defined by Hampel et al. (1986). They have bounded influence functions, finite gross-error sensitivity, and finite rejection point. However, they have infinite local-shift sensitivity. Hence, these estimates can be highly sensitive to small perturbations in the data. Small shifts in centrally located data (inliers) can cause their values to change by relatively large (though bounded) amounts.
引用
收藏
页码:329 / 337
页数:9
相关论文
共 50 条
  • [1] Leveraged least trimmed absolute deviations
    Sudermann-Merx, Nathan
    Rebennack, Steffen
    [J]. OR SPECTRUM, 2021, 43 (03) : 809 - 834
  • [2] Leveraged least trimmed absolute deviations
    Nathan Sudermann-Merx
    Steffen Rebennack
    [J]. OR Spectrum, 2021, 43 : 809 - 834
  • [3] A NOTE ON THE BREAKDOWN POINT OF THE LEAST MEDIAN OF SQUARES AND LEAST TRIMMED SQUARES ESTIMATORS
    VANDEV, D
    [J]. STATISTICS & PROBABILITY LETTERS, 1993, 16 (02) : 117 - 119
  • [4] THE ASYMPTOTICS OF THE LEAST TRIMMED ABSOLUTE DEVIATIONS (LTAD) ESTIMATOR
    TABLEMAN, M
    [J]. STATISTICS & PROBABILITY LETTERS, 1994, 19 (05) : 387 - 398
  • [5] On the Least Trimmed Squares Estimator
    David M. Mount
    Nathan S. Netanyahu
    Christine D. Piatko
    Ruth Silverman
    Angela Y. Wu
    [J]. Algorithmica, 2014, 69 : 148 - 183
  • [6] On the Least Trimmed Squares Estimator
    Mount, David M.
    Netanyahu, Nathan S.
    Piatko, Christine D.
    Silverman, Ruth
    Wu, Angela Y.
    [J]. ALGORITHMICA, 2014, 69 (01) : 148 - 183
  • [7] Applications and algorithms for least trimmed sum of absolute deviations regression
    Hawkins, DM
    Olive, D
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 32 (02) : 119 - 134
  • [8] Study on Least Trimmed Absolute Deviations Artificial Neural Network
    Liao, Shih-Hui
    Chang, Jyh-Yeong
    Lin, Chin-Teng
    [J]. 2013 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY 2013), 2013, : 156 - 160
  • [9] On least trimmed squares neural networks
    Lin, Yih-Lon
    Hsieh, Jer-Guang
    Jeng, Jyh-Horng
    Cheng, Wen-Chin
    [J]. NEUROCOMPUTING, 2015, 161 : 107 - 112
  • [10] Reweighted least trimmed squares: an alternative to one-step estimators
    Pavel Čížek
    [J]. TEST, 2013, 22 : 514 - 533