Reweighted least trimmed squares: an alternative to one-step estimators

被引:0
|
作者
Pavel Čížek
机构
[1] Tilburg University,CentER, Department of Econometrics & OR
来源
TEST | 2013年 / 22卷
关键词
Asymptotic efficiency; Breakdown point; Least trimmed squares; Linear regression; 62F10; 62F12; 62F35; 62J05;
D O I
暂无
中图分类号
学科分类号
摘要
A new class of robust regression estimators is proposed that forms an alternative to traditional robust one-step estimators and that achieves the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{n}$\end{document} rate of convergence irrespective of the initial estimator under a wide range of distributional assumptions. The proposed reweighted least trimmed squares (RLTS) estimator employs data-dependent weights determined from an initial robust fit. Just like many existing one- and two-step robust methods, the RLTS estimator preserves robust properties of the initial robust estimate. However contrary to existing methods, the first-order asymptotic behavior of RLTS is independent of the initial estimate even if errors exhibit heteroscedasticity, asymmetry, or serial correlation. Moreover, we derive the asymptotic distribution of RLTS and show that it is asymptotically efficient for normally distributed errors. A simulation study documents benefits of these theoretical properties in finite samples.
引用
收藏
页码:514 / 533
页数:19
相关论文
共 50 条
  • [1] Reweighted least trimmed squares: an alternative to one-step estimators
    Cizek, Pavel
    [J]. TEST, 2013, 22 (03) : 514 - 533
  • [2] THE INFLUENCE FUNCTIONS FOR THE LEAST TRIMMED SQUARES AND THE LEAST TRIMMED ABSOLUTE DEVIATIONS ESTIMATORS
    TABLEMAN, M
    [J]. STATISTICS & PROBABILITY LETTERS, 1994, 19 (04) : 329 - 337
  • [3] A NOTE ON THE BREAKDOWN POINT OF THE LEAST MEDIAN OF SQUARES AND LEAST TRIMMED SQUARES ESTIMATORS
    VANDEV, D
    [J]. STATISTICS & PROBABILITY LETTERS, 1993, 16 (02) : 117 - 119
  • [4] INFLUENCE FUNCTIONS OF ITERATIVELY REWEIGHTED LEAST-SQUARES ESTIMATORS
    DOLLINGER, MB
    STAUDTE, RG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (415) : 709 - 716
  • [5] On the least trimmed squares estimators for JS']JS circular regression model
    Alshqaq, Shokrya Saleh
    [J]. KUWAIT JOURNAL OF SCIENCE, 2021, 48 (03)
  • [6] Time-Lapse One-Step Least-Squares Migration
    Liu, Qiancheng
    Chen, Ling
    Xu, Jincheng
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 4
  • [7] On the Least Trimmed Squares Estimator
    David M. Mount
    Nathan S. Netanyahu
    Christine D. Piatko
    Ruth Silverman
    Angela Y. Wu
    [J]. Algorithmica, 2014, 69 : 148 - 183
  • [8] On the Least Trimmed Squares Estimator
    Mount, David M.
    Netanyahu, Nathan S.
    Piatko, Christine D.
    Silverman, Ruth
    Wu, Angela Y.
    [J]. ALGORITHMICA, 2014, 69 (01) : 148 - 183
  • [9] MSE analysis of the iteratively reweighted least squares algorithm when applied to M estimators
    Kalyani, Sheetal
    Giridhar, K.
    [J]. GLOBECOM 2007: 2007 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-11, 2007, : 2873 - +
  • [10] One-step data-domain least-squares reverse time migration
    Liu, Qiancheng
    Peter, Daniel
    [J]. GEOPHYSICS, 2018, 83 (04) : R361 - R368