ON THE REALITY OF SPACE-TIME GEOMETRY AND THE WAVE-FUNCTION

被引:19
|
作者
ANANDAN, J
BROWN, HR
机构
[1] UNIV OXFORD, DEPT THEORET PHYS, OXFORD, ENGLAND
[2] UNIV S CAROLINA, DEPT PHYS & ASTRON, COLUMBIA, SC 29208 USA
关键词
D O I
10.1007/BF02055212
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The action-reaction principle (AR) is examined in three contexts: (1) the inertial-gravitational interaction between a particle and space-time geometry, (2) protective observation of an extended wave function of a single particle, and (3) the causal-stochastic or Bohm interpretation of quantum mechanics. A new criterion of reality is formulated using the AR principle This criterion implies that the wave function of a single particle is real and justifies in the Bohm interpretation the dual ontology of the particle and its associated wave function. But it is concluded that the Bohm theory is not dynamically complete because the particle and its associated wave function do not satisfy the AR principle.
引用
收藏
页码:349 / 360
页数:12
相关论文
共 50 条
  • [21] Geometry of quantum correlations in space-time
    Zhao, Zhikuan
    Pisarczyk, Robert
    Thompson, Jayne
    Gu, Mile
    Vedral, Vlatko
    Fitzsimons, Joseph F.
    [J]. PHYSICAL REVIEW A, 2018, 98 (05)
  • [22] Space-Time Models in Stochastic Geometry
    Benes, Viktor
    Prokesova, Michaela
    Helisova, Katerina Stankova
    Zikmundova, Marketa
    [J]. STOCHASTIC GEOMETRY, SPATIAL STATISTICS AND RANDOM FIELDS: MODELS AND ALGORITHMS, 2015, 2120 : 204 - 231
  • [23] Metrical Conception of the Space-Time Geometry
    Yuri A. Rylov
    [J]. International Journal of Theoretical Physics, 2015, 54 : 334 - 339
  • [24] DUAL MODELS AND GEOMETRY OF SPACE-TIME
    SCHERK, J
    SCHWARZ, JH
    [J]. PHYSICS LETTERS B, 1974, B 52 (03) : 347 - 350
  • [25] Hermitian geometry and complex space-time
    Chamseddine, AH
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (02) : 291 - 302
  • [26] SPACE-TIME GEOMETRY AND SYMMETRY BREAKING
    LUCIANI, JF
    [J]. NUCLEAR PHYSICS B, 1978, 135 (01) : 111 - 130
  • [27] SPACE-TIME GEOMETRY ON A MOVING SYSTEM
    SELZER, A
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (07): : 787 - &
  • [28] Special relativity and space-time geometry
    Molski, M
    [J]. PHYSICS ESSAYS, 1995, 8 (04) : 601 - 604
  • [29] Gauge fields and space-time geometry
    Obukhov, YN
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1998, 117 (02) : 1308 - 1318
  • [30] Multiple view geometry in the space-time
    Hayakawa, K
    Sato, J
    [J]. COMPUTER VISION - ACCV 2006, PT II, 2006, 3852 : 437 - 446