ON THE TYPE OF CERTAIN C(0)-SEMIGROUPS

被引:37
|
作者
RENARDY, M [1 ]
机构
[1] VIRGINIA POLYTECH INST & STATE UNIV,ICAM,BLACKSBURG,VA 24061
基金
美国国家科学基金会;
关键词
D O I
10.1080/03605309308820975
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A = A0 + B be the infinitesimal generator of a C0-semigroup in Hilbert space. We assume that A0 is normal and B is bounded. We further assume that there is M > 0 such that every spectral value of A0 with modulus greater than M - 1 is an isolated eigenvalue with finite multiplicity. Moreover, we assume that the multiplicities of all the eigenvalues lying in any given unit disk (centered at some z with Absolute value of z less-than-or-equal-to M) do not add up to more than some fixed integer n. It is proved that the type.of the semigroup is determined by the spectrum of A. Applications to one-dimensional hyperbolic problems are given.
引用
收藏
页码:1299 / 1307
页数:9
相关论文
共 50 条
  • [21] Polynomially Bounded C0-Semigroups
    Tatjana Eisner
    Semigroup Forum, 2005, 70 : 118 - 126
  • [22] A universal property of C-0-semigroups
    Herzog, Gerd
    Schmoeger, Christoph
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2009, 50 (01): : 83 - 88
  • [23] Norm continuity of c0-semigroups
    Goersmeyer, V
    Weis, L
    STUDIA MATHEMATICA, 1999, 134 (02) : 169 - 178
  • [24] C0-sequentially equicontinuous semigroups
    Federico, Salvatore
    Rosestolato, Mauro
    KYOTO JOURNAL OF MATHEMATICS, 2020, 60 (03) : 1131 - 1175
  • [25] On the infinite product of C0-semigroups
    Arendt, W
    Driouich, A
    El-Mennaoui, O
    JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 160 (02) : 524 - 542
  • [26] On individual stability of C0-semigroups
    Van Neerven, JMAM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (08) : 2325 - 2333
  • [27] GENERATORS OF POSITIVE C0-SEMIGROUPS
    MIYAJIMA, S
    OKAZAWA, N
    PACIFIC JOURNAL OF MATHEMATICS, 1986, 125 (01) : 161 - 175
  • [28] APPROXIMATION OF PERTURBED C-0-SEMIGROUPS
    PISKAREV, SI
    DIFFERENTIAL EQUATIONS, 1994, 30 (02) : 314 - 317
  • [29] Polynomially bounded C0-semigroups
    Eisner, T
    SEMIGROUP FORUM, 2005, 70 (01) : 118 - 126
  • [30] The Specification Property for C0-Semigroups
    Bartoll, S.
    Martinez-Gimenez, F.
    Peris, A.
    Rodenas, F.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (03)