Experimental Study for Investigating the Mechanism of Heat Transfer Near the Critical Heat Flux in Nucleate Pool Boiling

被引:2
|
作者
Sikarwar, B. S. [1 ]
Shukla, R. K. [1 ]
Sharma, S. K. [1 ]
机构
[1] Amity Univ, Amity Sch Engn Technol, Noida, UP, India
来源
INTERNATIONAL JOURNAL OF ENGINEERING | 2015年 / 28卷 / 08期
关键词
Pool Boiling Nucleate; Macro-layer; Mashroom; Critical Heat Flux; Vapor Mass; Frequency;
D O I
10.5829/idosi.ije.2015.28.08b.18
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The regime of nucleate pool boiling near critical heat flux (60-98% of CHF) is known as vapor mushroom regime. Understanding the mechanism of heat transfer in regime of vapor mushroom of nucleate pool boiling is not only helpful to explain high rate heat transfer, but also useful to explain boiling crisis phenomenon. In this paper, an experimental setup is designed and fabricated to study the mechanism of heat transfer from boiling surface to bulk liquid near critical heat flux (vapor mushroom regime). In addition, vapor mass frequency and thickness of macro-layer are measured at various heat fluxes in this regime of boiling. The experimental study reveals that individual bubbles coalesce due to very high bubble site density and form vapor mass entrapping a relatively thicker film of liquid known as 'macro-layer' between the growing vapor mass and the heating surface of pool boiling near the high heat flux region. The rate of evaporation of macro-layer and transient conduction through macro-layer is the prime parameter to transfer heat from the heated surface. The thickness of the macro-layer is found to be lying in the range of 153-88 mu m, respectively, for range of 60-98% critical heat flux. As the heat flux increases, the thickness of macro-layer decreases. The vapor mass frequency varies from 4 to 8.80 Hz for water in the range of 60-98 % of critical heat flux. The vapor mass frequency increases as heat flux increases due to higher evaporation rate associated with higher heat flux. The data reported in this manuscript are more consistent as comparing to data available in the literature and these data are useful in modeling heat transfer in nucleate pool boiling near critical heat flux.
引用
收藏
页码:1241 / 1250
页数:10
相关论文
共 50 条
  • [31] On the Mechanism of Pool Boiling Critical Heat Flux Enhancement in Nanofluids
    Kim, Hyungdae
    Ahn, Ho Seon
    Kim, Moo Hwan
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2010, 132 (06): : 1 - 11
  • [32] Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface
    Kim, Seol Ha
    Lee, Gi Cheol
    Kang, Jun Young
    Moriyama, Kiyofumi
    Kim, Moo Hwan
    Park, Hyun Sun
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 91 : 1140 - 1147
  • [33] The influence of oil on nucleate pool boiling heat transfer
    Klaus Spindler
    Erich Hahne
    Heat and Mass Transfer, 2009, 45
  • [34] A fractal model for nucleate pool boiling heat transfer
    Yu, BM
    Cheng, P
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (06): : 1117 - 1124
  • [35] The influence of oil on nucleate pool boiling heat transfer
    Spindler, Klaus
    Hahne, Erich
    HEAT AND MASS TRANSFER, 2009, 45 (07) : 979 - 990
  • [36] NUMERICAL INVESTIGATION OF NUCLEATE POOL BOILING HEAT TRANSFER
    Stojanovic, Andrijana D.
    Stevanovic, Vladimir D.
    Petrovic, Milan M.
    Zivkovic, Dragoljub S.
    THERMAL SCIENCE, 2016, 20 : S1301 - S1312
  • [37] Marangoni heat transfer in subcooled nucleate pool boiling
    Petrovic, S
    Robinson, T
    Judd, RL
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (23) : 5115 - 5128
  • [38] Nucleate pool boiling heat transfer of multicomponent mixtures
    Rao, GV
    Balakrishnan, AR
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2004, 82 (A1): : 43 - 52
  • [39] Single bubble heat transfer in nucleate pool boiling
    Hahne, E
    Ribeiro, R
    HEAT TRANSFER 1998, VOL 2: GENERAL PAPERS, 1998, : 503 - 508
  • [40] PREDICTION OF NUCLEATE POOL BOILING HEAT TRANSFER COEFFICIENT
    Sathyabhama, Alangar
    Hegde, Ramakrishna N.
    THERMAL SCIENCE, 2010, 14 (02): : 353 - 364