Q-DISCRETE TODA MOLECULE EQUATION

被引:9
|
作者
KAJIWARA, K
OHTA, Y
SATSUMA, J
机构
[1] KYOTO UNIV,MATH SCI RES INST,KYOTO 606,JAPAN
[2] UNIV TOKYO,DEPT MATH SCI,MEGURO KU,TOKYO 153,JAPAN
关键词
D O I
10.1016/0375-9601(93)90705-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A q-discrete version of the two-dimensional Toda molecule equation is proposed through the direct method. Its solution, Backlund transformation and Lax pair are discussed. The reduction to the q-discrete cylindrical Toda molecule equation is also discussed.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 50 条
  • [31] Integrability on generalized q-Toda equation and hierarchy
    Anni Meng
    Chuanzhong Li
    Shuo Huang
    Journal of Nonlinear Mathematical Physics, 2014, 21 : 429 - 441
  • [32] Integrability on generalized q-Toda equation and hierarchy
    Meng, Anni
    Li, Chuanzhong
    Huang, Shuo
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (03) : 429 - 441
  • [33] Baxter Operator and Baxter Equation for q-Toda and Toda2 Chains
    Babelon, Olivier
    Kozlowski, Karol K.
    Pasquier, Vincent
    REVIEWS IN MATHEMATICAL PHYSICS, 2018, 30 (06)
  • [34] Solution of Baxter equation for the q-Toda and Toda2 chains by NLIE
    Babelon, Olivier
    Kozlowski, Karol K.
    Pasquier, Vincent
    SCIPOST PHYSICS, 2018, 5 (04):
  • [35] Bilinear equations and q-discrete Painleve equations satisfied by variables and coefficients in cluster algebras
    Okubo, Naoto
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (35)
  • [36] Soliton cellular automaton, Toda molecule equation and sorting algorithm
    Nagai, A
    Takahashi, D
    Tokihiro, T
    PHYSICS LETTERS A, 1999, 255 (4-6) : 265 - 271
  • [37] Soliton cellular automaton, Toda molecule equation and sorting algorithm
    Nagai, A.
    Takahashi, D.
    Tokihiro, T.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 255 (4-6): : 265 - 271
  • [38] Integrability criterion in terms of coprime property for the discrete Toda equation
    Kanki, Masataka
    Mada, Jun
    Tokihiro, Tetsuji
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (02)
  • [39] Geometric Approach to Lie Symmetry of Discrete Time Toda Equation
    Jia Xiao-Yu
    Wang Na
    CHINESE PHYSICS LETTERS, 2009, 26 (08)
  • [40] RATIONAL SOLUTIONS OF A DIFFERENTIAL-DIFFERENCE KDV EQUATION, THE TODA EQUATION AND THE DISCRETE KDV EQUATION
    HU, XB
    CLARKSON, PA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (17): : 5009 - 5016