DIFFUSION ON THE TORUS FOR HAMILTONIAN MAPS

被引:5
|
作者
SIBONI, S
TURCHETTI, G
VAIENTI, S
机构
[1] INFN,SEZ BOLOGNA,BOLOGNA,ITALY
[2] CNRS MARSEILLE LUMINY,CTR PHYS THEOR,MARSEILLE,FRANCE
[3] UNIV TOULON & VAR,DEPT MATH,F-83130 LA GARDE,FRANCE
关键词
DECAY OF CORRELATION; DIFFUSION PROCESS;
D O I
10.1007/BF02186285
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a mapping of the torus T2 we propose a definition of the diffusion coefficient D suggested by the solution of the diffusion equation on T2. The definition of D, based on the limit of moments of the invariant measure, depends on the set OMEGA where an initial uniform distribution is assigned. For the algebraic automorphism of the torus the limit is proved to exist and to have the same value for almost all initial sets OMEGA in the subfamily of parallelograms. Numerical results show that it has the same value for arbitrary polygons Q and for arbitrary moments.
引用
收藏
页码:167 / 187
页数:21
相关论文
共 50 条
  • [41] Tessellation and Visibility Representations of Maps on the Torus
    B. Mohar
    P. Rosenstiehl
    Discrete & Computational Geometry, 1998, 19 : 249 - 263
  • [42] On Quantum Ergodicity for Linear Maps of the Torus
    Pär Kurlberg
    Zeév Rudnick
    Communications in Mathematical Physics, 2001, 222 : 201 - 227
  • [43] TORUS MAPS AND ALMOST PERIODIC MOVEMENTS
    HOYRUP, E
    MATEMATISK-FYSISKE MEDDELELSER UDGIVET AF DET KONGELIGE DANSKE VIDENSKABERNES SELSKAB, 1972, 38 (10): : 1 - &
  • [44] VERTEX-TRANSITIVE MAPS ON A TORUS
    Such, O.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2011, 80 (01): : 1 - 30
  • [45] Quantum Unique Ergodicity for Maps on the Torus
    Lior Rosenzweig
    Annales Henri Poincaré, 2006, 7 : 447 - 469
  • [46] On quantum ergodicity for linear maps of the torus
    Kurlberg, P
    Rudnick, Z
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 222 (01) : 201 - 227
  • [47] Quantum boundary conditions for torus maps
    Keating, JP
    Mezzadri, F
    Robbins, JM
    NONLINEARITY, 1999, 12 (03) : 579 - 591
  • [48] Torus maps, symmetries, and spectral statistics
    Keating, JP
    Mezzadri, F
    NEW DIRECTIONS IN QUANTUM CHAOS, 2000, 143 : 449 - 472
  • [49] Classical limits for quantum maps on the torus
    Lesniewski, A
    Rubin, R
    Salwen, N
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (04) : 1835 - 1847
  • [50] Momentum Maps and Hamiltonian Reduction
    Donev, Stoil
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2005, 4 : 97 - 98