DIFFUSION ON THE TORUS FOR HAMILTONIAN MAPS

被引:5
|
作者
SIBONI, S
TURCHETTI, G
VAIENTI, S
机构
[1] INFN,SEZ BOLOGNA,BOLOGNA,ITALY
[2] CNRS MARSEILLE LUMINY,CTR PHYS THEOR,MARSEILLE,FRANCE
[3] UNIV TOULON & VAR,DEPT MATH,F-83130 LA GARDE,FRANCE
关键词
DECAY OF CORRELATION; DIFFUSION PROCESS;
D O I
10.1007/BF02186285
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a mapping of the torus T2 we propose a definition of the diffusion coefficient D suggested by the solution of the diffusion equation on T2. The definition of D, based on the limit of moments of the invariant measure, depends on the set OMEGA where an initial uniform distribution is assigned. For the algebraic automorphism of the torus the limit is proved to exist and to have the same value for almost all initial sets OMEGA in the subfamily of parallelograms. Numerical results show that it has the same value for arbitrary polygons Q and for arbitrary moments.
引用
收藏
页码:167 / 187
页数:21
相关论文
共 50 条
  • [1] ON ANNULAR MAPS OF THE TORUS AND SUBLINEAR DIFFUSION
    Davalos, Pablo
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2018, 17 (04) : 913 - 978
  • [2] RESONANCES AND DIFFUSION IN PERIODIC HAMILTONIAN MAPS
    DANA, I
    MURRAY, NW
    PERCIVAL, IC
    PHYSICAL REVIEW LETTERS, 1989, 62 (03) : 233 - 236
  • [3] Hamiltonian torus actions
    Karshon, Y
    GEOMETRY AND PHYSICS, 1997, 184 : 221 - 230
  • [4] Generalized honeycomb torus is Hamiltonian
    Yang, XF
    Evans, DJ
    Lai, HJ
    Megson, GM
    INFORMATION PROCESSING LETTERS, 2004, 92 (01) : 31 - 37
  • [5] Equivelar maps on the torus
    Brehm, Ulrich
    Kuehnel, Wolfgang
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (08) : 1843 - 1861
  • [6] Bisingular maps on the torus
    Li Z.
    Liu Y.
    Journal of Applied Mathematics and Computing, 2007, 23 (1-2) : 329 - 335
  • [7] Modular Hamiltonian of a chiral fermion on the torus
    Blanco, David
    Perez-Nadal, Guillem
    PHYSICAL REVIEW D, 2019, 100 (02)
  • [8] Embedding the torus automorphisms to Hamiltonian flows
    Akritas, P
    Antoniou, I
    Pronko, GP
    CHAOS SOLITONS & FRACTALS, 2001, 12 (14-15) : 2815 - 2819
  • [9] Hamiltonian Decomposition of the Rectangular Twisted Torus
    Jha, Pranava K.
    Prasad, Rachna
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2012, 23 (08) : 1504 - 1507
  • [10] Toeplitz operators and Hamiltonian torus actions
    Charles, L
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 236 (01) : 299 - 350