EXTREMAL TRIANGULATIONS OF CONVEX POLYGONS

被引:0
|
作者
Bezdek, Andras [1 ]
Fodor, Ferenc [2 ,3 ]
机构
[1] Auburn Univ, Dept Math & Stat, 221 Parker Hall, Auburn, AL 36849 USA
[2] Univ Szeged, Bolyai Inst, Dept Geometry, H-6720 Szeged, Hungary
[3] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
来源
SYMMETRY-CULTURE AND SCIENCE | 2011年 / 22卷 / 3-4期
关键词
convex polygons; Malfatti's problem; triangulations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
T. Andreescu and O. Mushkarov asked the following Malfatti-type problem: What is the maximum total area of k nonoverlapping triangles placed in a given circle? In connection with this unsolved problem, it is proved that if each triangle must be inscribed in a given convex disc K, then the union of the triangles in the maximal arrangement is a convex (k - 2)-gon that is also inscribed in K. Furthemore, the presented constructions demonstrate that the nonoverlapping condition is essential in the sense that for any pair (n, k) with 1 < k < n - 2 there exists a convex n-gon in which the family of k triangles with maximal total area contains overlapping triangles. We also consider the analogous problem in which the total area is minimized.
引用
收藏
页码:427 / 434
页数:8
相关论文
共 50 条
  • [41] Characterization of Extremal Antipodal Polygons
    O. Aichholzer
    L. E. Caraballo
    J. M. Díaz-Báñez
    R. Fabila-Monroy
    C. Ochoa
    P. Nigsch
    Graphs and Combinatorics, 2015, 31 : 321 - 333
  • [42] EXTREMAL POLYGONS CIRCUMSCRIBED AN OVAL
    CIESLAK, W
    GOZDZ, S
    ACTA MATHEMATICA HUNGARICA, 1989, 54 (1-2) : 63 - 68
  • [43] DECOMPOSITION OF A CONVEX POLYGON INTO CONVEX POLYGONS
    BLIND, G
    DISCRETE MATHEMATICS, 1979, 26 (01) : 1 - 15
  • [44] EXTREMAL PROPERTIES OF PLANE HOMOGENEOUS TRIANGULATIONS
    VIDOMENKO, VP
    CYBERNETICS, 1983, 19 (02): : 218 - 222
  • [45] RAY SHOOTING IN POLYGONS USING GEODESIC TRIANGULATIONS
    CHAZELLE, B
    EDELSBRUNNER, H
    GRIGNI, M
    GUIBAS, L
    HERSHBERGER, J
    SHARIR, M
    SNOEYINK, J
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 510 : 661 - 673
  • [46] Optimal angle bounds for Steiner triangulations of polygons
    Bishop, Christopher J.
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 3127 - 3143
  • [47] CLASS OF CONVEX POLYGONS
    STRAUSS, FB
    AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (06): : 496 - 496
  • [48] On Hamiltonian triangulations in simple polygons - (Extended abstract)
    Narasimhan, G
    ALGORITHMS AND DATA STRUCTURES, 1997, 1272 : 321 - 330
  • [49] RAY SHOOTING IN POLYGONS USING GEODESIC TRIANGULATIONS
    CHAZELLE, B
    EDELSBRUNNER, H
    GRIGNI, M
    GUIBAS, L
    HERSHBERGER, J
    SHARIR, M
    SNOEYINK, J
    ALGORITHMICA, 1994, 12 (01) : 54 - 68
  • [50] ON THE UNIMODALITY OF CONVEX POLYGONS
    OLARIU, S
    INFORMATION PROCESSING LETTERS, 1988, 29 (06) : 289 - 292