The research for optimal choice method of bandwidth parameter in nonparametric estimation of reliability regression models

被引:0
|
作者
Demin, Viktor A. [1 ]
Chimitova, Ekaterina, V [1 ]
Schekoldin, Vladislav Yu [1 ]
机构
[1] Novosibirsk State Tech Univ, Novosibirsk, Russia
关键词
reliability function; regression model; nonparametric Beran estimator; bandwidth parameter; smoothing parameter; robust estimation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the paper, we consider one of the most popular nonparametric estimators of regression reliability models proposed by R. Beran. Such estimator allows to evaluate the conditional reliability function with the given values of covariates by the following formula: (S) over cap (hn) (t vertical bar x) = Pi(Y(i)<= t) {1-W-n(i) (x,h(n))/1-Sigma W-i=1(j=1)n(j) (x,h(n))} where x is the value of covariate in the reliability function S(t vertical bar x); Y-( i) is the element of variational series; W-n(i) (x;h(n)), i=1,...,n, are the Nadaraya - Watson weights, i.e., W-n(i) (x; h(n)) = K (x-x(i)/h(n)) / Sigma(n)(j=1) K (x-x(j)/h(n)). It is well-known, the quality of the Beran estimator essentially depends on the chosen value of the bandwidth parameter h(n). In our previous paper, the method of selecting the optimal bandwidth parameter was proposed, which is based on the minimization of the distance of failure times with kernel estimation for the inverse reliability function. Here, we consider the modification of this method by solving such optimization problem: h(n)(opt) = arg min h(n) Sigma(n)(i=1) vertical bar (g) over cap((p) over cap (i) vertical bar x(i))-Y-i vertical bar, where (g) over cap((p) over cap vertical bar x(i)) = Sigma(n)(j=1) omega(j) ((p)over cap(i)).Y-j. The probabilities (p) over cap (i) are calculated by using the instrumentality of the Beran estimators, omega(j) ((p) over capi) are certain weights which can be calculated with various weight functions. We investigate the statistical properties of the Beran estimators by Monte Carlo simulations. It is shown that the accuracy of this estimators depend on the sample size, the number of covariates' values, the selection of the weight function's form, the method of smoothing parameter estimation and the type of kernel functions used in the smoothing parameter estimation and the bandwidth parameter calculation. The obtained results allow us to formulate recommendations for estimating the conditional reliability function by the Beran estimator. In our opinion, the most appropriate results are achieved by the Priestley - Chao weight function omega((2))(j) ((p) over cap (i)) = n ((p) over cap ((i)) - (p) over cap ((i-1))) K ((p) over cap (i)-(p) over cap (j)/b(NS)), with the smoothing parameter b(NS) = [8 pi R-1/2(K)/3 mu(2)(K)(2)n](1/5) (sigma) over cap, where mu(2) (K) = integral y(2)K(y)dy, R(K) = integral K-2(y)dy. We recommend the robust standard deviation estimator based on the mixing method using the median absolute deviation and the Hodges - Lehmann estimator: (sigma) over cap (robust) = 1.4826 med (i=1...n)vertical bar(p) over cap (i) - med (j=1...n,k=j+1...n)((p) over cap (j)+(p) over cap (k)/2)vertical bar. Also, we note that the quartic and Epanechnikov kernel functions lead to the most accurate Beran estimators.
引用
收藏
页码:10 / 18
页数:9
相关论文
共 50 条
  • [41] NONPARAMETRIC ESTIMATION OF LOCATION PARAMETER AFTER A PRELIMINARY TEST ON REGRESSION
    EHSANESSALEH, AKM
    SEN, PK
    [J]. ANNALS OF STATISTICS, 1978, 6 (01): : 154 - 168
  • [42] A METHOD OF MOMENTS APPROACH TO PARAMETER ESTIMATION IN INTRINSICALLY NONLINEAR REGRESSION MODELS
    Singh, Trijya
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 49 (01) : 1 - 20
  • [43] Reliability of parameter estimation in respirometric models
    Checchi, N
    Marsili-Libelli, S
    [J]. WATER RESEARCH, 2005, 39 (15) : 3686 - 3696
  • [44] Rate-optimal estimation for a general class of nonparametric regression models with unknown link functions
    Horowitz, Joel L.
    Mammen, Enno
    [J]. ANNALS OF STATISTICS, 2007, 35 (06): : 2589 - 2619
  • [45] On parameter estimation of software reliability models
    Barghout, May
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (02) : 910 - 932
  • [46] Parameter estimation for connectome generative models: Accuracy, reliability, and a fast parameter fitting method
    Liu, Yuanzhe
    Seguin, Caio
    Mansour, Sina
    Oldham, Stuart
    Betzel, Richard
    Di Biase, Maria A.
    Zalesky, Andrew
    [J]. NEUROIMAGE, 2023, 270
  • [47] Nonparametric Estimation in Random Coefficients Binary Choice Models
    Gautier, Eric
    Kitamura, Yuichi
    [J]. ECONOMETRICA, 2013, 81 (02) : 581 - 607
  • [48] Nonparametric Estimation of Copula Regression Models With Discrete Outcomes
    Yang, Lu
    Frees, Edward W.
    Zhang, Zhengjun
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 707 - 720
  • [49] NONPARAMETRIC IDENTIFICATION AND ESTIMATION OF TRUNCATED REGRESSION MODELS WITH HETEROSKEDASTICITY
    Chen, Songnian
    Lu, Xun
    Zhou, Xianbo
    Zhou, Yahong
    [J]. ECONOMETRIC THEORY, 2018, 34 (03) : 543 - 573
  • [50] Robust estimation of error scale in nonparametric regression models
    Ghement, Isabella Rodica
    Ruiz, Marcelo
    Zamar, Ruben
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (10) : 3200 - 3216