Fuzzy Bayesian inference

被引:2
|
作者
Viertl, Reinhard [1 ]
Sunanta, Owat [1 ]
机构
[1] Vienna Univ Technol, Dept Stat & Probabil Theory, Vienna, Austria
来源
关键词
Bayesian analysis; Fuzzy data; Generalized Bayes' theorem; Characterizing function; Vector-characterizing function; Fuzzy Bayesian analysis; Fuzzy HPD-region; Fuzzy predictive distribution;
D O I
10.1007/s40300-013-0026-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In standard Bayesian inference, a-priori distributions are assumed to be classical probability distributions. This is a topic of critical discussions because, in reality, a-priori information is usually more or less non-precise, i.e. fuzzy. Hence, a more general form of a-priori distributions (so-called fuzzy a-priori densities) is more suitable to model such a-priori information. Moreover, data from continuous quantities are always more or less fuzzy. As a result, Bayes' theorem has to be generalized to capture this situation. This is possible and will be explained in the paper. In addition, the concepts of HPD-regions and predictive distributions are generalized to the situation of fuzzy a-priori information and fuzzy data.
引用
收藏
页码:207 / 216
页数:10
相关论文
共 50 条
  • [41] Bayesian inference: an approach to statistical inference
    Fraser, D. A. S.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04): : 487 - 496
  • [42] On adaptive Bayesian inference
    Xing, Yang
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 : 848 - 862
  • [43] Bayesian inference in ecology
    Ellison, AM
    [J]. ECOLOGY LETTERS, 2004, 7 (06) : 509 - 520
  • [44] Bayesian entropy and inference
    Phipps, TE
    Brill, MH
    [J]. PHYSICS ESSAYS, 1995, 8 (04) : 615 - 625
  • [45] A GENERALIZATION OF BAYESIAN INFERENCE
    DEMPSTER, AP
    WEISBERG, H
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1968, 30 (02) : 205 - &
  • [46] Bayesian Techniques for Inference
    Asensio Ramos, A.
    [J]. SOLAR POLARIZATION 6, 2011, 437 : 135 - 145
  • [47] Approximate Bayesian Inference
    Alquier, Pierre
    [J]. ENTROPY, 2020, 22 (11)
  • [48] Fault Inference of Electronic Equipment Based on Multi-State Fuzzy Bayesian Network
    Wang, Ling
    Zhou, Dongfang
    Zhang, Hao
    Tian, Hui
    Zou, Caihong
    Wang, Xiushan
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (20):
  • [49] On the Geometry of Bayesian Inference
    de Carvalho, Miguel
    Page, Garritt L.
    Barney, Bradley J.
    [J]. BAYESIAN ANALYSIS, 2019, 14 (04): : 1013 - 1036
  • [50] Inference in Bayesian networks
    Needham, CJ
    Bradford, JR
    Bulpitt, AJ
    Westhead, DR
    [J]. NATURE BIOTECHNOLOGY, 2006, 24 (01) : 51 - 53