We have characterized a nuclear phosphoprotein of 57 kda, statin, found only in nonproliferating cells of both quiescent and senescent natures. Emerging results suggest that statin may function as a sequester to block the early G1 phase phosphorylation for the RB protein. A second protein, terminin, undergoes senescence-specific posttranslational modification from 90 to 60 kda, and further death-specific conversion from 60 to 30 kda. We also found that apoptotic mouse 3T3 fibroblasts express c-fos, c-myc, c-jun, and cdc2, as well as the upregulation of RB phosphorylation and BrdU incorporation, just before final DNA fragmentation and death. It seems that en route to death, cells re-enter the cell-cycle traverse and experience early G1 and part of S Phase; however, this cycling event is an abortive one. In contrast, senescent fibroblasts are resistant to the initiation of the death program, since they are unable to enter cell cycle traverse. Long-term serial passaging of normal human fibroblasts may be inadvertently selecting those, while termed as senescent, are also specialized survivors, and thus a good culture model to study both the control of permanent departure from cell cycle traverse and the mechanism underlying the survival or antideath cellular program. (C) 1994 Wiley-Liss, Inc.