ONE-DIMENSIONAL SCHR "ODINGER OPERATORS WITH SINGULAR PERIODIC POTENTIALS

被引:0
|
作者
Mikhailets, Vladimir [1 ]
Molyboga, Volodymyr [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, 3 Tereschenkivska, UA-01601 Kiev, Ukraine
来源
关键词
Hill equations; Schrodinger operators; singular potentials; spectrum gaps; periodic eigenvalues;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the one-dimensional Schrodinger operators S(q) u := -u" + q( x) u, u is an element of Dom(S( q)), with 1-periodic real- valued singular potentials q( x) is an element of H-1 (per) (R, R) on the Hilbert space L-2 (R). We show equivalence of five basic definitions of the operators S(q) and prove that they are self- adjoint. A new proof of continuity of the spectrum of the operators S(q) is found. Endpoints of spectrum gaps are precisely described.
引用
收藏
页码:184 / 200
页数:17
相关论文
共 50 条
  • [21] On the AC Spectrum of One-dimensional Random Schrödinger Operators with Matrix-valued Potentials
    Richard Froese
    David Hasler
    Wolfgang Spitzer
    Mathematical Physics, Analysis and Geometry, 2010, 13 : 219 - 233
  • [22] Semiclassical Low Energy Scattering for One-Dimensional Schrödinger Operators with Exponentially Decaying Potentials
    Ovidiu Costin
    Roland Donninger
    Wilhelm Schlag
    Saleh Tanveer
    Annales Henri Poincaré, 2012, 13 : 1371 - 1426
  • [23] One-dimensional perturbations of singular unitary operators
    Kapustin V.V.
    Journal of Mathematical Sciences, 1998, 92 (1) : 3619 - 3621
  • [24] On the spectrum of a two-dimensional generalized periodic Schr odinger operator
    Danilov, L. I.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2013, (01): : 78 - 95
  • [25] One-dimensional Schrodinger operators with decaying potentials
    Remling, C
    MATHEMATICAL RESULTS IN QUANTUM MECHANICS, 1999, 108 : 343 - 349
  • [26] One-Dimensional Schrodinger Operators with Complex Potentials
    Derezinski, Jan
    Georgescu, Vladimir
    ANNALES HENRI POINCARE, 2020, 21 (06): : 1947 - 2008
  • [27] Hierarchical Schrödinger Operators with Singular Potentials
    Alexander Bendikov
    Alexander Grigor’yan
    Stanislav Molchanov
    Proceedings of the Steklov Institute of Mathematics, 2023, 323 : 12 - 46
  • [28] Hierarchical Schrödinger Operators with Singular Potentials
    Bendikov, Alexander
    Grigor'yan, Alexander
    Molchanov, Stanislav
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 323 (01) : 12 - 46
  • [29] SCATTERING BY LOCALLY PERIODIC ONE-DIMENSIONAL POTENTIALS
    ROZMAN, MG
    REINEKER, P
    TEHVER, R
    PHYSICS LETTERS A, 1994, 187 (01) : 127 - 131
  • [30] Topological bands in one-dimensional periodic potentials
    Zheng, Yi
    Yang, Shi-Jie
    Physica B: Condensed Matter, 2014, 454 : 93 - 97