THE MEAN CHROMATIC NUMBER OF PATHS AND CYCLES

被引:1
|
作者
ANTHONY, M
BIGGS, N
机构
[1] Department of Statistical and Mathematical Sciences, The London School of Economics, London
关键词
D O I
10.1016/0012-365X(93)90581-D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The mean chromatic number of a graph is defined. This is a measure of the expected performance of the greedy vertex-colouring algorithm when each ordering of the vertices is equally likely. In this note, we analyse the asymptotic behaviour of the mean chromatic number for the paths and even cycles, using generating function techniques.
引用
收藏
页码:227 / 231
页数:5
相关论文
共 50 条
  • [41] The Optimal Rubbling Number of Paths, Cycles, and Grids
    Xia, Zheng-Jiang
    Hong, Zhen-Mu
    Complexity, 2021, 2021
  • [42] The Optimal Rubbling Number of Paths, Cycles, and Grids
    Xia, Zheng-Jiang
    Hong, Zhen-Mu
    COMPLEXITY, 2021, 2021
  • [43] On multicolor Ramsey number of paths versus cycles
    Omidi, Gholam Reza
    Raeisi, Ghaffar
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [44] ON THE NUMBER OF INCREASING PATHS IN LABELED CYCLES AND STARS
    Chen Lei Lü Changhong Ye Yongsheng Department of Mathematics
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2007, (01) : 1 - 6
  • [45] The optimal pebbling number of square of paths and cycles
    Ye, Yongsheng
    Liu, Mei
    Gao, Jie
    ARS COMBINATORIA, 2014, 114 : 363 - 371
  • [46] On the number of increasing paths in labeled cycles and stars
    Chen L.
    Lü C.
    Ye Y.
    Applied Mathematics-A Journal of Chinese Universities, 2007, 22 (1) : 1 - 6
  • [47] ORIENTED CHROMATIC NUMBER OF CARTESIAN PRODUCTS AND STRONG PRODUCTS OF PATHS
    Dybizbanski, Janusz
    Nenca, Anna
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 211 - 223
  • [48] On the Connection Between the Chromatic Number of a Graph and the Number of Cycles Covering a Vertex or an Edge
    Berlov S.L.
    Tyschuk K.I.
    Journal of Mathematical Sciences, 2018, 232 (1) : 1 - 5
  • [49] Cycles in triangle-free graphs of large chromatic number
    Alexandr Kostochka
    Benny Sudakov
    Jacques Verstraëte
    Combinatorica, 2017, 37 : 481 - 494
  • [50] On the total chromatic number of the direct product of cycles and complete graphs
    Castonguay, Diane
    de Figueiredo, Celina M. H.
    Kowada, Luis A. B.
    Patrao, Caroline S. R.
    Sasaki, Diana
    Valencia-Pabon, Mario
    RAIRO-OPERATIONS RESEARCH, 2024, 58 (02) : 1609 - 1632