GENERALIZED THOM SPECTRA AND TRANSVERSALITY FOR SPHERICAL FIBRATIONS

被引:6
|
作者
LEVITT, N
机构
来源
关键词
D O I
10.1090/S0002-9904-1970-12524-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:727 / &
相关论文
共 50 条
  • [21] Families of Structures on Spherical Fibrations
    Alberto Cavicchioli
    Friedrich Hegenbarth
    [J]. Geometriae Dedicata, 2001, 85 : 85 - 111
  • [22] Families of structures on spherical fibrations
    Cavicchioli, A
    Hegenbarth, F
    [J]. GEOMETRIAE DEDICATA, 2001, 85 (1-3) : 85 - 111
  • [23] Dimension functions for spherical fibrations
    Okay, Cihan
    Yalcin, Ergun
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (07): : 3907 - 3941
  • [24] The sectional category of spherical fibrations
    Stanley, D
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (10) : 3137 - 3143
  • [25] A generalized transversality in global analysis
    Ma, Jipu
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2008, 236 (02) : 357 - 371
  • [26] Perfectoid rings as Thom spectra
    Mao, Zhouhang
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (03):
  • [27] THE HOMOTOPY THOM CLASS OF A SPHERICAL FIBRATION
    MARCUM, HJ
    RANDALL, D
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 80 (02) : 353 - 358
  • [28] The cotangent complex and Thom spectra
    Nima Rasekh
    Bruno Stonek
    [J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2020, 90 : 229 - 252
  • [29] Perfectoid rings as Thom spectra
    Zhouhang Mao
    [J]. Selecta Mathematica, 2023, 29
  • [30] The cotangent complex and Thom spectra
    Rasekh, Nima
    Stonek, Bruno
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2020, 90 (02): : 229 - 252