A Comparison of Estimation Methods For Nonlinear Mixed Effects Models Under Model Misspecification and Data Sparseness: A Simulation Study

被引:0
|
作者
Harring, Jeffrey R. [1 ]
Liu, Junhui [2 ]
机构
[1] Univ Maryland, Dept Human Dev & Quantitat Methodol, Measurement Stat & Evaluat, College Pk, MD 20742 USA
[2] Educ Testing Serv, Princeton, NJ 08541 USA
关键词
Random coefficient models; linearization; quadrature; Bayesian; nonlinear models; non-normality;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A Monte Carlo simulation is employed to investigate the performance of five estimation methods of nonlinear mixed effects models in terms of parameter recovery and efficiency of both regression coefficients and variance/covariance parameters under varying levels of data sparseness and model misspecification.
引用
收藏
页码:539 / 569
页数:31
相关论文
共 50 条
  • [1] Comparison of nonparametric methods in nonlinear mixed effects models
    Antic, J.
    Laffont, C. M.
    Chafai, D.
    Concordet, D.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (03) : 642 - 656
  • [2] The Consequences of Model Misspecification for the Estimation of Nonlinear Interaction Effects
    Beiser-McGrath, Janina
    Beiser-McGrath, Liam F.
    [J]. POLITICAL ANALYSIS, 2023, 31 (02): : 278 - 287
  • [3] Comparison of different estimation methods in growth curve models for categorical data: A simulation study
    Salari, Maryam
    Kazemnejad, Anoshirvan
    Zayeri, Farid
    Daneshvar, Ramin
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (06) : 1811 - 1830
  • [4] Comparison of designs for generalized linear models under model misspecification
    Mukhopadhyay, S.
    Khuri, A. I.
    [J]. STATISTICAL METHODOLOGY, 2012, 9 (03) : 285 - 304
  • [5] Predictions of machine learning with mixed-effects in analyzing longitudinal data under model misspecification
    Shuwen Hu
    You-Gan Wang
    Christopher Drovandi
    Taoyun Cao
    [J]. Statistical Methods & Applications, 2023, 32 : 681 - 711
  • [6] Predictions of machine learning with mixed-effects in analyzing longitudinal data under model misspecification
    Hu, Shuwen
    Wang, You-Gan
    Drovandi, Christopher
    Cao, Taoyun
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (02): : 681 - 711
  • [7] On the Estimation of Nonlinear Mixed-Effects Models and Latent Curve Models for Longitudinal Data
    Blozis, Shelley A.
    Harring, Jeffrey R.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2016, 23 (06) : 904 - 920
  • [8] Performance Comparison of Various Maximum Likelihood Nonlinear Mixed-Effects Estimation Methods for Dose–Response Models
    Elodie L. Plan
    Alan Maloney
    France Mentré
    Mats O. Karlsson
    Julie Bertrand
    [J]. The AAPS Journal, 2012, 14 : 420 - 432
  • [9] Nonparametric estimation in nonlinear mixed effects models
    Lai, TL
    Shih, MC
    [J]. BIOMETRIKA, 2003, 90 (01) : 1 - 13
  • [10] A linear mixed model for predicting a binary event from longitudinal data under random effects misspecification
    Albert, Paul S.
    [J]. STATISTICS IN MEDICINE, 2012, 31 (02) : 143 - 154