PSEUDO-JORDAN DOMAINS AND REFLECTING BROWNIAN MOTIONS

被引:7
|
作者
CHEN, ZQ
机构
[1] Department of Mathematics, Washington University, St. Louis, 63130, MO
关键词
Mathematics Subject Classification: P 60J65; S; 31C25;
D O I
10.1007/BF01192446
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The manifold metric between two points in a planar domain is the minimum of the lengths of piecewise C1 curves in the domain connecting these two points. We define a bounded simply connected planar region to be a pseudo Jordan domain if its boundary under the manifold metric is topologically homeomorphic to the unit circle. It is shown that reflecting Brownian motion X on a pseudo Jordan domain can be constructed starting at all points except those in a boundary subset of capacity zero. X has the expected Skorokhod decomposition under a condition which is satisfied when partial derivative G has finite 1-dimensional lower Minkowski content.
引用
收藏
页码:271 / 280
页数:10
相关论文
共 50 条
  • [1] A NOTE ON REFLECTING BROWNIAN MOTIONS
    Soucaliuc, Florin
    Werner, Wendelin
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2002, 7 : 117 - 122
  • [2] An invariance principle for semimartingale reflecting Brownian motions in domains with piecewise smooth boundaries
    Kang, W.
    Williams, R. J.
    ANNALS OF APPLIED PROBABILITY, 2007, 17 (02): : 741 - 779
  • [3] WEAK CONVERGENCE OF REFLECTING BROWNIAN MOTIONS
    Burdzy, Krzysztof
    Chen, Zhen-Qing
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 1998, 3 : 29 - 33
  • [4] Boundary trace of reflecting Brownian motions
    Benjamini, I
    Chen, ZQ
    Rohde, S
    PROBABILITY THEORY AND RELATED FIELDS, 2004, 129 (01) : 1 - 17
  • [5] FILTERING OF ABSORBING AND REFLECTING BROWNIAN MOTIONS
    BANEK, T
    SYSTEMS & CONTROL LETTERS, 1986, 8 (02) : 153 - 159
  • [6] Boundary trace of reflecting Brownian motions
    Itai Benjamini
    Zhen-Qing Chen
    Steffen Rohde
    Probability Theory and Related Fields, 2004, 129 : 1 - 17
  • [7] A BOUNDARY PROPERTY OF SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS
    REIMAN, MI
    WILLIAMS, RJ
    PROBABILITY THEORY AND RELATED FIELDS, 1988, 77 (01) : 87 - 97
  • [8] LYAPUNOV FUNCTIONS FOR SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS
    DUPUIS, P
    WILLIAMS, RJ
    ANNALS OF PROBABILITY, 1994, 22 (02): : 680 - 702
  • [9] Uniqueness for reflecting Brownian motion in lip domains
    Bass, RF
    Burdzy, K
    Chen, ZQ
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (02): : 197 - 235
  • [10] EXISTENCE AND UNIQUENESS OF SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS IN AN ORTHANT
    TAYLOR, LM
    WILLIAMS, RJ
    PROBABILITY THEORY AND RELATED FIELDS, 1993, 96 (03) : 283 - 317