THE EQUIVARIANT THOM ISOMORPHISM THEOREM

被引:2
|
作者
COSTENOBLE, SR
WANER, S
机构
[1] Hofstra University, Hempstead, NY
关键词
D O I
10.2140/pjm.1992.152.21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we extend ordinary RO(G)-graded cohomology to a theory graded on virtual G-bundles over a G-space and show that a Thom Isomorphism theorem for general G-vector bundles results. Our approach uses Elmendorf's topologized spectra. We also show that the grading can be reduced from the group of virtual G-vector bundles over a space to a quotient group, using ideas from a new theory of equivariant orientations. As an application of the Thom Isomorphism theorem, we give a new calculation of the additive structure of the equivariant cohomology of complex projective spaces for G = Z/p, partly duplicating and partly extending a recent calculation done by Lewis.
引用
收藏
页码:21 / 39
页数:19
相关论文
共 50 条
  • [41] EQUIVARIANT PINCHING THEOREM
    IMHOF, HC
    RUH, EA
    COMMENTARII MATHEMATICI HELVETICI, 1975, 50 (03) : 389 - 401
  • [42] Equivariant Hopf Theorem
    Balanov, Z
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (06) : 3463 - 3474
  • [43] RELATIVE DOLD-THOM THEOREM
    DELEANU, A
    ARCHIV DER MATHEMATIK, 1966, 17 (03) : 234 - &
  • [44] The intersection Dold-Thom theorem
    Gajer, P
    TOPOLOGY, 1996, 35 (04) : 939 - 967
  • [45] ON A THEOREM OF RENE THOM IN GEOMETRIE FINIE
    Chaperon, Marc
    Meyer, Daniel
    ENSEIGNEMENT MATHEMATIQUE, 2009, 55 (3-4): : 329 - 357
  • [46] EQUIVARIANT AND INVARIANT THEORY OF NETS OF CONICS WITH AN APPLICATION TO THOM POLYNOMIALS
    Domokos, M.
    Feher, L. M.
    Rimanyi, R.
    JOURNAL OF SINGULARITIES, 2013, 7 : 1 - 20
  • [47] Equivariant Freudenthal theorem and equivariant n-movability
    Gevorkian, PS
    RUSSIAN MATHEMATICAL SURVEYS, 2001, 56 (01) : 156 - 157
  • [48] A GENERALIZATION OF THOM'S TRANSVERSALITY THEOREM
    Vokrinek, Lukas
    ARCHIVUM MATHEMATICUM, 2008, 44 (05): : 523 - 533
  • [49] Bott-Thom isomorphism, Hopf bundles and Morse theory
    Eschenburg, Jost-Hinrich
    Hanke, Bernhard
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (01): : 127 - 174
  • [50] Eilenberg-Mac Lane spectra as equivariant Thom spectra
    Hahn, Jeremy
    Wilson, Dylan
    GEOMETRY & TOPOLOGY, 2020, 24 (06) : 2709 - 2748