The quantum group symmetry of the c < 1 Rational Conformal Field Theory, in its Coulomb gas version, is formulated in terms of a new type of screened vertex operators, which define the representation spaces of a quantum group Q. The conformal properties of these operators show a deep interplay between the quantum group Q and the Virasoro algebra. The R-matrix, the comultiplication rules and the quantum Clebsch-Gordan coefficients of Q are obtained using contour deformation techniques. Finally, the relation between the chiral vertex operators and the quantum Clebsch-Gordan coefficients is shown.