YOSIDA APPROXIMATION AND NONLINEAR HYPERBOLIC EQUATION

被引:25
|
作者
IKEHATA, R
OKAZAWA, N
机构
[1] Department of Mathematics, Science University of Tokyo, Shinjuku, Tokyo, 162
关键词
compactness argument; global solutions; Quasilinear hyperbolic equation; regularity; Yosida approximations;
D O I
10.1016/0362-546X(90)90128-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:479 / 495
页数:17
相关论文
共 50 条
  • [21] The Yosida approximation iterative technique for split monotone Yosida variational inclusions
    Mijanur Rahaman
    Mohd. Ishtyak
    Rais Ahmad
    Imran Ali
    Numerical Algorithms, 2019, 82 : 349 - 369
  • [22] A class of Yosida inclusion and graph convergence on Yosida approximation mapping with an application
    Gupta, Sanjeev
    Khan, Faizan Ahmad
    FILOMAT, 2023, 37 (15) : 4881 - 4902
  • [23] On a class of quasilinear hyperbolic equations and yosida approximations
    Park, JY
    Jung, IH
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1999, 30 (11): : 1091 - 1106
  • [24] Generalized quasilinear hyperbolic equations and Yosida approximations
    Park, JY
    Jung, IH
    Kang, YH
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 74 : 69 - 86
  • [25] Hyperbolic cross approximation for the spatially homogeneous Boltzmann equation
    Fonn, E.
    Grohs, P.
    Hiptmair, R.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (04) : 1533 - 1567
  • [27] The conduit equation: Hyperbolic approximation and generalized Riemann problem
    Gavrilyuk, Sergey
    Nkonga, Boniface
    Shyue, Keh-Ming
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 514
  • [28] On Some Yosida Type Approximation Theorems
    Pater, Flavius
    Lemle, Ludovic Dan
    Binzar, Tudor
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 521 - +
  • [29] SOLVABILITY OF NONLINEAR HYPERBOLIC EQUATION WITH NONLINEAR INTEGRAL NEUMANN CONDITIONS
    Taki-eddine, O. U. S. S. A. E. I. F.
    Zainouba, C. H. E. B. A. N. A.
    Adel, O. U. A. N. N. A. S.
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2022, 17 (03): : 333 - 354
  • [30] Energy decay for a damped nonlinear hyperbolic equation
    Aassila, M
    Guesmia, A
    APPLIED MATHEMATICS LETTERS, 1999, 12 (03) : 49 - 52